Apprentissage supervisé

Master parcours SSD - UE Apprentissage Statistique II

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> Compromis iais/variance

alidation roisée

Théorie de la décision statistique

k-PPV

Conclusion

Python

Apprentissage statistique?

Apprentissage statistique = apprentissage automatique

► (statistical learning, machine learning)

Wikipedia: Machine learning is the subfield of computer science that gives computers the ability to learn without being explicitly programmed. [...] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data – such algorithms overcome following strictly static program instructions by making data driven predictions or decisions, through building a model from sample inputs.

- ⇒ Apprentissage à partir d'exemples
 - par opposition aux systèmes experts.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/varia

Validation

Théorie de la décision

-PPV

Conclusion

Python

Apprentissage statistique

Principe = trouver des régularités dans les données

Pourquoi faire?

- découvrir des structures "cachées" dans les observations
 - apprentissage non-supervisé
- prédire de nouvelles observations
 - apprentissage supervisé

A l'interface de nombreux domaines :

- statistiques
 - ▶ informatique ("computer science")
 - intelligence artificielle
- mathématiques (e.g., optimisation numérique)
- ▶ théorie de la décision

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

ompromis ais/varian

Validation

roisée

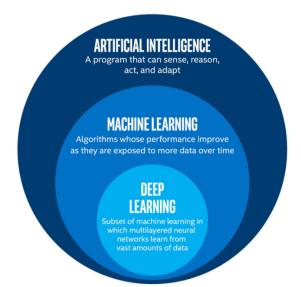
Théorie de la décision statistique

-PPV

Conclusion

Pythor

Machine Learning / Intelligence Artificielle / Deep Learning?



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

.....

Régression linéaire Régression polynomiale

ompromis ais/varianc

Validation croisée

Théorie de la décision

k-PPV

Conclusion

ython

Motivation

Il est très dur de définir ce qui "fait" un 2 :

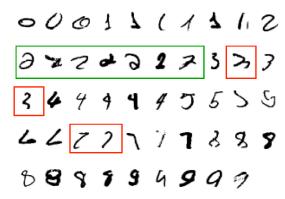


Figure: Exemple tiré d'un cours de G. Hinton

...mais on sait très bien apprendre à les reconnaître.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

> ompromis ais/varianc

Validation croisée

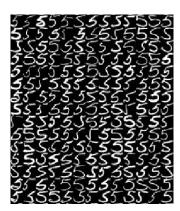
Théorie de la décision statistique

k-PPV

Conclusion

Concidator

L'approche Machine Learning ¹



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

'alidation roisée

Théorie de la décision statistique

-PPV

Conclusion

ython

éférences

1. USPS dataset: http://www.cs.nyu.edu/~roweis/data.htmf)/70

Intérêt

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

lompromis iais/variand

alidation

Théorie de l

....

C l

5 ...

Python

Références

L'apprentissage statistique prend tout son sens quand :

- ▶ l'expertise humaine est absente
 - ► e.g., analyse de l'ADN
- il est très difficile de l'expliciter
 - e.g., reconnaissance de caractères
- les quantités de données à traiter sont trop importantes
 - e.g., applications web / réseaux sociaux
- les données évoluent dynamiquement
 - e.g., prédire le cours d'actions financières

Enormément d'applications dans de nombreux domaines!

Analyse d'image

Catégorisation

Interprétation de scènes

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

....

Régression linéaire Régression polynomiale

Compromis biais/variand

/alidation

Théorie de la décision

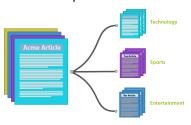
-PPV

Conclusion

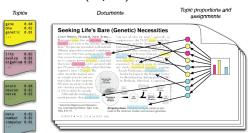
Python

Analyse de texte

► Catégorisation automatique



▶ Détection de thèmes (topics) "cachés"



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

ompromis ais/varian

Validation croisée

Théorie de la décision

k-PPV

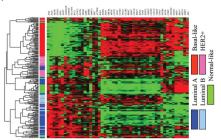
Conclusion

Pythor

Biologie / santé

▶ Prédire la fonction d'une protéine à partir de sa structure

► Diagnostic/prognostic à partir de puces à ADN



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision

k-PPV

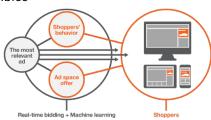
Conclusion

Pythor

Web / Internet

Recommandation

Publicité ciblée



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustration

Régression linéaire Régression polynomiale

ompromis

/alidation

Théorie de la décision

-PPV

Conclusion

Python

Réseaux sociaux

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustration

Régression linéaire Régression polynomiale

Compromis

Validation

Théorie de la décision

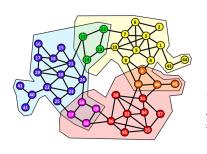
-PPV

Conclusion

Pythor

Références

Détection de communautés



Et plein d'autres....

- Audio : reconnaissance de la parole, séparation de sources
- ► Vidéo : suivi d'objets, surveillance
- ► Finance. économie
- ► Sciences de la Vie : climatologie, planétologie
- Génétique
- **.**..

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

alidation

rhéorie de la Jécision

.a ciociq

k-PPV

Conclusion

Python

Défis

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Com<mark>p</mark>romis biais/variand

Validation croisée

Théorie de la décision

k-PPV

Conclusion

Pythor

Références

 Apprendre des comportements qui soient valables pour d'autres observations

notion de généralisation

Faire face à des types de données variés

vecteurs, matrices, courbes, séquences, arbres, graphes

► Faire face à des volumes de données conséquents

► apprentissage : large-scale learning & haute dimension

prédiction : problématiques temps-réel

Les deux cadres d'apprentissage principaux ²

Apprentissage supervisé :

- données : observations (X, Y)
 - descripteurs / variables explicatives + variable d'intérêt
- objectif(s) : prédiction
 - ► (+ compréhension du lien entre X et Y)

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Régression linéaire Régression polynomiale

> ompromis ais/variance

alidation

héorie de la

DD\/

onclusion

Python

^{2.} mais aussi apprentissage par renforcement, semi-supervisé, transductif, actif, online, ... 15/70

Les deux cadres d'apprentissage principaux ²

Apprentissage supervisé :

- données : observations (X, Y)
 - descripteurs / variables explicatives + variable d'intérêt
- ▶ objectif(s) : prédiction
 - ► (+ compréhension du lien entre X et Y)

Apprentissage non-supervisé :

- ▶ données : observations X
 - pas de variable à expliquer
- objectif : identifier des "structures" dans les données
 - moins clairement formalisé que le supervisé

⇒ ce cours = apprentissage supervisé

Apprentissage Statistique II

Introduction

Apprentissage supervisé

luctration

Régression linéaire Régression polynomiale

ais/varian

alidation roisée

roisee Théorie de l

.a ciociq

-PPV

Conclusion

ython

Outline

^{2.} mais aussi apprentissage par renforcement, semi-supervisé, transductif, actif, online, ... 15/70

Apprentissage supervisé - principe

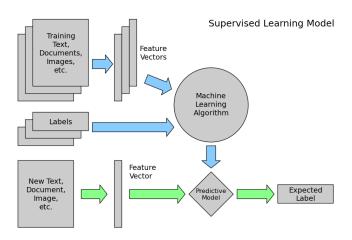


Figure: Image tirée de http://www.astroml.org/sklearn_tutorial/general_concepts.html

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustra

Régression linéaire Régression polynomiale

> ompromis ais/varianc

alidation roisée

Théorie de la décision

-PPV

Conclusion

Python

Apprentissage supervisé - formalisation

On dispose d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n, :

- ightharpoonup des observations $x_i \in \mathcal{X}$,
- ▶ des réponses associées $y_i \in \mathcal{Y}$.
- ⇒ ce sont les données (ou le jeu) d'apprentissage.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

> ompromis ais/variance

alidation roisée

héorie de la écision

-PPV

Conclusion

Python

Régression linéaire Régression polynomiale

ompromis ais/varianc

Validation croisée

Théorie de l décision

k_PP\/

Conclusion

Python

Références

On dispose d'un échantillon $\{(x_i, y_i)\}, i = 1, ..., n, :$

- ▶ des observations $x_i \in \mathcal{X}$,
- ▶ des réponses associées $y_i \in \mathcal{Y}$.
- ⇒ ce sont les données (ou le jeu) d'apprentissage.

Typiquement:

- $\mathcal{X} = \mathbb{R}^p$: on parle de vecteurs de descripteurs
 - ► features, attributes, input variables
- ▶ Si $\mathcal{Y} = \mathbb{R}$, on parle de régression.
- ▶ Si $\mathcal{Y} = \{1, ..., K\}$, on parle de classification
- ▶ Si $\mathcal{Y} = \{-1, +1\}$, on parle de classification binaire
 - lacktriangle on note parfois également $\mathcal{Y}=\{0,1\}$

On a un jeu d'apprentissage : $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,...,n}$.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustratio

Régression linéaire Régression polynomiale

> mpromis is/variance

alidation oisée

> éorie de la cision tistique

-PPV

Conclusion

Python

On a un jeu d'apprentissage : $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,...,n}$.

 \Rightarrow Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

ompromis iais/variance

alidation roisée

héorie de la écision tatistique

k-PPV

Conclusion

ython

On a un jeu d'apprentissage :
$$\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,...,n}$$
.

 \Rightarrow Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Comment faire?

- 1. choisir une famille de fonctions candidates
 - e.g., une famille paramétrique de fonctions
- 2. choisir un membre de la famille grâce à \mathcal{D}

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

compromis piais/variance

/alidation roisée

Théorie de la décision

-PPV

Conclusion

ython

On a un jeu d'apprentissage : $\mathcal{D} = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1,...,n}$.

 \Rightarrow Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Comment faire?

- 1. choisir une famille de fonctions candidates
 - e.g., une famille paramétrique de fonctions
- 2. choisir un membre de la famille grâce à \mathcal{D}
- ⇒ choisir la famille de fonctions = hypothèse de modélisation
- ⇒ choisir une fonction = optimiser un critère

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

piais/variance

/alidation croisée

Théorie de la décision statistique

-PPV

Conclusion

Python

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire

Régression polynomiale

Compromis biais/varia

Validation croisée

Théorie de la décision

k-PPV

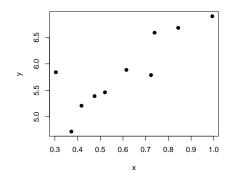
Conclusion

Python

Références

Illustration : régressions linéaires & polynomiales

Modèle :
$$f(x) = \alpha x + \beta$$



 \Rightarrow famille de fonctions : $\{(\alpha, \beta) \in \mathbb{R}^2 : f(x) = \alpha x + \beta\}$

Outline

Apprentissage Statistique II

Introduction

Apprentissage

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/variance

Validation croisée

Théorie de la décision

Conclusion

Python

i ytiioii

Modèle :
$$f(x) = \alpha x + \beta$$

 \Rightarrow comment choisir la "meilleure" fonction (α^*, β^*) ?

Outline

Apprentissage Statistique II

polynomiale

Régression linéaire Régression

Modèle :
$$f(x) = \alpha x + \beta$$

- \Rightarrow comment choisir la "meilleure" fonction (α^*, β^*) ?
 - critère d'erreur des moindres carrés : $(y f(x))^2$
 - qu'on évalue sur le jeu d'apprentissage :

$$J((\alpha, \beta)) = \sum_{i=1}^{n} (f(x_i) - y_i)^2$$
$$= \sum_{i=1}^{n} (\alpha x_i + \beta - y_i)^2$$

- et qu'on minimise : $(\alpha^*, \beta^*) = \arg\min_{\alpha, \beta} J((\alpha, \beta))$
- ⇒ un problème d'optimisation

Outline

Apprentissage Statistique II

Introduction

Apprentissag supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/variance

alidation

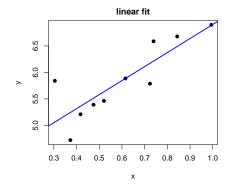
Théorie de la décision statistique

k-PPV

Conclusion

Python

Modèle :
$$f(x) = \alpha x + \beta$$



$$\Rightarrow$$
 solution : $\hat{f}(x) = 2.65x + 4.26$

Outline

Apprentissage Statistique II

Introduction

Apprentissage

Illustrati

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

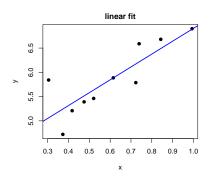
Théorie de la lécision

-PPV

Conclusion

Python

Régression linéaire : modèle parfois trop simple



- \Rightarrow pour aller plus loin, deux solutions :
 - 1. considérer des modèles de régression non linéaires
 - e.g., splines, lowess, ...
 - 2. appliquer des transformations aux données d'entrée
 - "basis functions expansion"

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire

Régression polynomiale

Validation

croisée

Théorie de la décision statistique

k-PPV

Conclusion

Python

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustra

Régression linéaire Régression polynomiale

> ompromis ais/variance

/alidation roisée

Théorie de la lécision tatistique

k-PPV

Conclusion

Concidion

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$

- on a $\mathbf{x} = [x_1, ..., x_n]^T$ et $\mathbf{y} = [y_1, ..., y_n]^T$
- on définit $\mathbf{b} = [\beta_0, \beta_1, ..., \beta_d]^T$
- on construit la matrice Φ :

$$\Phi = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^d \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^d \end{bmatrix}$$

 \blacktriangleright on minimise la différence entre y et $\Phi b: ||y-\Phi b||^2$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis piais/variance

Validation croisée

Théorie de la décision statistique

-PPV

Conclusion

Pythor

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$

- on a $\mathbf{x} = [x_1, ..., x_n]^T$ et $\mathbf{y} = [y_1, ..., y_n]^T$
- on définit $\mathbf{b} = [\beta_0, \beta_1, ..., \beta_d]^T$
- on construit la matrice Φ :

$$\Phi = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^d \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^d \end{bmatrix}$$

- on minimise la différence entre \mathbf{y} et $\Phi \mathbf{b} : ||\mathbf{y} \Phi \mathbf{b}||^2$
- ⇒ c'est un problème de régression linéaire multivariée
 - ightharpoonup modèle linéaire : linéaire selon ses paramètres eta_j

$$\Rightarrow$$
 solution $\mathbf{b}^* = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$ (normal equations)

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/variance

Validation croisée

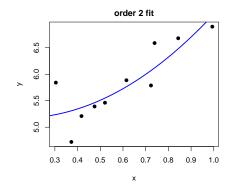
Théorie de la décision statistique

-PPV

Conclusion

Python

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$



 \Rightarrow solution à l'ordre d=2.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

/alidation croisée

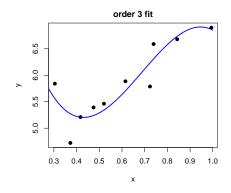
Théorie de la lécision statistique

-PPV

Conclusion

_ .

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$



Outline

Apprentissage Statistique II

Introduction

Apprentissage

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

/alidation roisée

Théorie de la décision

-PPV

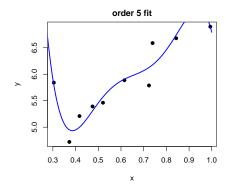
Conclusion

_ .

Référence

 \Rightarrow solution à l'ordre d = 3.

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$



 \Rightarrow solution à l'ordre d = 5.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

'alidation roisée

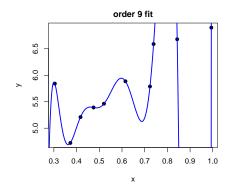
Théorie de la décision statistique

-PPV

Conclusion

_ .

Modèle :
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + ... + \beta_d x^d$$



 \Rightarrow solution à l'ordre d = 9.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/variance

/alidation roisée

Théorie de la décision statistique

-PPV

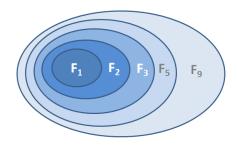
Conclusion

_ .

Régression polynomiale

Quand d augmente :

- ▶ la classe de fonctions est de + en + grande $(F_i \subset F_{i+1})$
- ightharpoonup l'erreur d'apprentissage $||\mathbf{y} \Phi \mathbf{b}||^2$ decroît



- ⇒ risque de sur-apprentissage avec les fonctions complexes :
 - très (trop) bon "fit" sur les données d'apprentissage
 - ► mauvaise généralisation à de nouvelles données

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

Théorie de la décision statistique

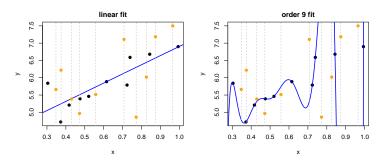
-PPV

Conclusio

Python

Régression polynomiale

Sur-apprentissage: illustration



- très (trop) bon "fit" sur les données d'apprentissage
- mauvaise généralisation à de nouvelles données

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

lustration

Régression linéaire Régression polynomiale

biais/variand

Validation croisée

Théorie de la décision statistique

-PPV

Conclusion

vthon

Remarque - "Basis Functions expansions"

Transformations par Basis Functions Expansion :

$$f(x) = \sum_{m=0}^{M} \beta_m h_m(x)$$

 \Rightarrow régression polynomiale : $h_m(x) = x^m$.

Autres exemples :

- fonctions Gaussiennes : $h_m(x) = \exp\left(-\frac{||x-\mu_m||^2}{2\sigma_m^2}\right)$
- ▶ autres transformations non-linéaires :
 - $h_m(x) = \log(x)$
 - $h_m(x) = \sqrt{x}$
 - **...**
- ▶ intéractions $h_m(\mathbf{x}) = \mathbf{x}_i \mathbf{x}_j$, quand $\mathbf{x} \in \mathbb{R}^p, p > 1$.

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

ompromis ais/variance

/alidation roisée

héorie de la écision

-PPV

Conclusion

Python

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

Théorie de la lécision

k-PPV

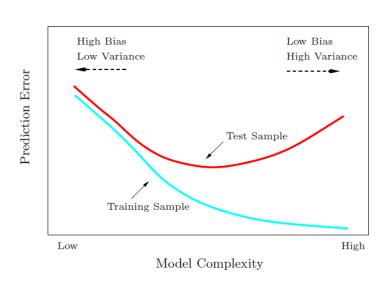
Conclusion

ython

Références

Compromis biais/variance

Compromis biais/variance³



Outline

Apprentissage Statistique II

Introductio

Apprentissa; supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation oisée

Théorie de la décision

PPV

Conclusion

hethon

éférences

3. Image tirée de Hastie et al. (2001) (Fig.2.11)

30/70

Compromis biais/variance

Formalisation:

- ▶ On dispose d'un jeu de données $\mathcal{D} = \{(xi, y_i)\}_{i=1,...,n}$
- ▶ On considère que (x_i, y_i) est tiré selon une loi P(X, Y)
- On a obtenu le modèle $\hat{f}_{\mathcal{D}}(x)$ à l'issue de l'apprentissage
- On suppose qu'il existe une vraie fonction $Y = f(X) + \epsilon$, où ϵ est un bruit de moyenne nulle et de variance σ^2 .

Outline

Apprentissage Statistique II

Introduction

Apprentissago supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation roisée

Théorie de la décision statistique

-PPV

Conclusion

Pythor

Compromis biais/variance

Formalisation:

- ▶ On dispose d'un jeu de données $\mathcal{D} = \{(xi, y_i)\}_{i=1,...,n}$
- ▶ On considère que (x_i, y_i) est tiré selon une loi P(X, Y)
- ▶ On a obtenu le modèle $\hat{f}_{\mathcal{D}}(x)$ à l'issue de l'apprentissage
- On suppose qu'il existe une vraie fonction $Y = f(X) + \epsilon$, où ϵ est un bruit de moyenne nulle et de variance σ^2 .

L'erreur faite en $x=x_0$ par le modèle $\hat{f}_{\mathcal{D}}$ est donnée par :

$$E[(Y - \hat{f}_{\mathcal{D}}(x_0))^2 | X = x_0]$$

Elle dépend :

- 1. de la variabilité intrinsèque : $Y = f(X) + \epsilon$
- 2. du fait que $\hat{f}_{\mathcal{D}}$ ait été obtenu sur le jeu (aléatoire) \mathcal{D}

Outline

Apprentissage Statistique II

Introduction

Apprentissag supervisé

lustrati

Régression linéaire Régression polynomiale

Compromis biais/variance

'alidation roisée

Théorie de la décision statistique

k-PPV

Conclusio

Python

Compromis biais variance

L'erreur faite en $x=x_0$ par le modèle $\hat{f}_{\mathcal{D}}$ est donnée par :

$$E\big[(Y-\hat{\mathit{f}}_{\mathcal{D}}(x_0))^2|X=x_0\big]= \underbrace{E_Y E_{\mathcal{D}}}_{\mathcal{D}}\big[(Y-\hat{\mathit{f}}_{\mathcal{D}}(x_0))^2|X=x_0\big]$$

 \Rightarrow On peut la décomposer comme 4 :

$$E[(Y - \hat{f}_{D}(x_{0}))^{2}|X = x_{0}] = E_{Y}[(Y - f(x_{0}))^{2}] + (f(x_{0}) - E_{D}[\hat{f}_{D}(x_{0})])^{2} + E_{D}[(E_{D}[\hat{f}_{D}(x_{0})] - \hat{f}_{D}(x_{0}))^{2}]$$

Outline

Apprentissage Statistique II

Introduction

Apprentissa upervisé

.....

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

Théorie de la décision statistique

-PPV

Conclusion

ython

^{4.} Voir Hastie et al. (2001) + on supprime le conditionnement $X = \frac{32.70}{100}$

Compromis biais variance

$$E[(Y - \hat{f}_{\mathcal{D}}(x_0))^2 | X = x_0] = E_Y[(Y - f(x_0))^2]$$
 (1)

$$+ \left(f(x_0) - \mathbf{E}_{\mathcal{D}} [\hat{f}_{\mathcal{D}}(x_0)] \right)^2 \tag{2}$$

$$+ E_{\mathcal{D}} \left[\left(E_{\mathcal{D}} [\hat{f}_{\mathcal{D}}(x_0)] - \hat{f}_{\mathcal{D}}(x_0) \right)^2 \right] \quad (3)$$

- ▶ (1) est une erreur irréductible liée à la relation non déterministe entre Y et X
 - ▶ $P(Y|X = x_0)$: cette erreur est hors de notre contrôle
- (2) est le (carré du) biais du modèle $\hat{f}_{\mathcal{D}}$
 - ► l'écart entre la vraie fonction et la modèle moyen (selon les données d'apprentissage)
- (3) est la variance du modèle $\hat{f}_{\mathcal{D}}$
 - la variabilité de $\hat{f}_{\mathcal{D}}$ autour du modèle moyen quand le jeu de données change

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

lustratio

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

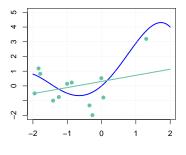
Théorie de la décision statistique

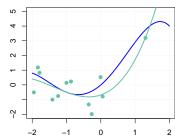
-PPV

Conclusion

ython

\Rightarrow 8 régressions linéaire et polynomiale (d=7) :





Outline

Apprentissage Statistique II

Introduction

Apprentissage upervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation roisée

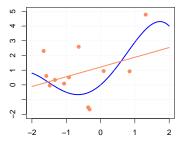
Théorie de la décision statistique

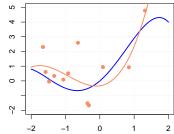
-PPV

Conclusion

ython

\Rightarrow 8 régressions linéaire et polynomiale (d = 7) :





Outline

Apprentissage Statistique II

Introduction

Apprentissage upervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation roisée

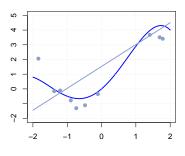
Théorie de la décision

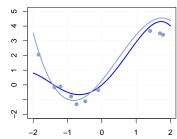
-PPV

Conclusion

Pythor

\Rightarrow 8 régressions linéaire et polynomiale (d=7) :





Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation

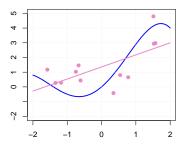
Théorie de la décision

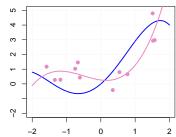
-PPV

Conclusion

Pythoi

\Rightarrow 8 régressions linéaire et polynomiale (d=7):





Outline

Apprentissage Statistique II

Introduction

Apprentissage upervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation roisée

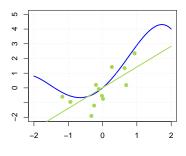
Théorie de la décision

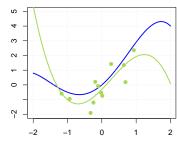
-PPV

Conclusion

ython

\Rightarrow 8 régressions linéaire et polynomiale (d=7) :





Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation roisée

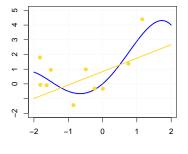
Théorie de la lécision tatistique

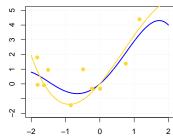
-PPV

Conclusion

Pytho

\Rightarrow 8 régressions linéaire et polynomiale (d=7) :





Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation roisée

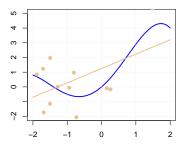
Théorie de la lécision tatistique

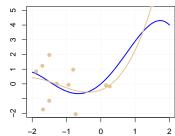
-PPV

Conclusion

ython

\Rightarrow 8 régressions linéaire et polynomiale (d = 7) :





Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation

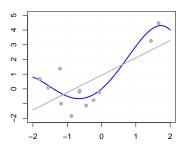
Théorie de la décision

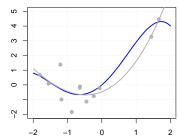
-PPV

Conclusion

Pythoi

\Rightarrow 8 régressions linéaire et polynomiale (d=7):





Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation

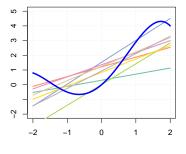
Théorie de la décision

-PPV

Conclusion

Pythoi

⇒ résumé :





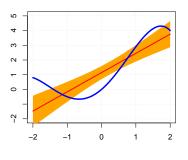
Outline

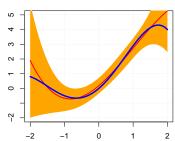
Apprentissage Statistique II

Régression linéaire Régression polynomiale

Compromis biais/variance

⇒ modèle moyen et variabilité sur 1000 tirages :





Outline

Apprentissage Statistique II

Introduction

Apprentissage

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation oisée

Théorie de la lécision

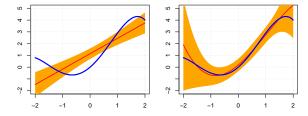
-PPV

Conclusion

Python

Compromis biais variance

⇒ Compromis :



Avec des classes de fonctions simples :

- on approxime en moyenne mal les données : biais élevé
- solution stable selon les échantillons : variance faible

Avec des classes de fonctions complexes :

- on approxime en moyenne bien les données : biais faible
- solution instable selon les échantillons : variance élevée

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

alidation roisée

Théorie de la décision

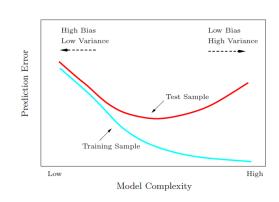
-PPV

Conclusion

Pytho

Compromis biais/variance

Question clé : trouver le bon niveau de complexité pour éviter le sous- et le sur-apprentissage.



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation roisée

Théorie de la décision

-PPV

Conclusion

Concidator

Référence

⇒ besoin d'un moyen d'estimer l'erreur de généralisation

Estimation de performance et validation croisée

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

Théorie de la décision

k-PPV

Conclusion

Pytho

A partir du jeu de données on doit résoudre deux problèmes :

- 1. trouver le bon niveau de complexité du modèle
 - compromis biais/variance et sous/sur-apprentissage
- 2. estimer ses performances de généralisation
 - performances sur de nouvelles données

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision

-PPV

Conclusion

Pythor

A partir du jeu de données on doit résoudre deux problèmes :

- 1. trouver le bon niveau de complexité du modèle
 - compromis biais/variance et sous/sur-apprentissage
- 2. estimer ses performances de généralisation
 - performances sur de nouvelles données

Paradigme de l'apprentissage supervisé :

- ▶ données d'apprentissage pour construire le modèle
- données de test pour évaluer les performances

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

ompromis iais/variance

Validation croisée

Théorie de la décision

k-PPV

Conclusion

Python

A partir du jeu de données on doit résoudre deux problèmes :

- 1. trouver le bon niveau de complexité du modèle
 - compromis biais/variance et sous/sur-apprentissage
- 2. estimer ses performances de généralisation
 - performances sur de nouvelles données

Paradigme de l'apprentissage supervisé :

- données d'apprentissage pour construire le modèle
- données de test pour évaluer les performances

Attention : données de test uniquement utilisées à la toute fin pour évaluer les performances du modèle final

▶ n'interviennent **jamais** dans la construction du modèle

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Ilustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision

-PPV

Conclusion

Python

Pour optimiser la complexité du modèle :

- besoin d'estimer les performances de généralisation
- mais sans faire appel aux données de test

Pourquoi?

- les données de test ne permettent que d'estimer l'erreur de généralisation
 - ▶ indicateurs de performance + intervalles de confiance
- optimiser le modèle pour maximiser les performances sur CE jeu de test serait une forme de sur-apprentissage!
 - et serait donc optimiste : la généralisation serait moins bonne

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Contrôler la complexité du modèle

Première solution : découpage train / validation / test :

TRAIN VALIDATION TEST

- 1. train : pour apprendre les différents modèles
- 2. validation : pour les évaluer et retenir le meilleur
- 3. test: pour estimer ses performances
- ⇒ situation optimale "data rich"
 - validation suffisamment grand pour bien estimer l'erreur

Deuxième solution : validation-croisée

Outline

Apprentissage Statistique II

Introduction

(pprentissag upervisé

Illustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision statistique

-PPV

Conclusion

ython

Validation croisée

Si peu de données : délicat de découper en train/validation

forte incertitude sur l'estimation des performances

Principe de la validation croisée :

- ▶ découper le jeu d'apprentissage en K parties les folds
 - les données de test sont toujours de côté
 - ▶ si on prend K = n on parle de "leave one out"
- pour k = 1, ..., K:
 - fold k = données de validation
 - autres folds = données d'apprentissage

	train				
Fold 1	validation1	train1			
Fold 2	train2	validation2	train2		
Fold 3	train3		validation3	train3	
Fold 4	train4			validation4	train4

⇒ on évalue les performance sur tout le jeu de données

Outline

Apprentissage Statistique II

Introduction

Apprentissag supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision

-PPV

Conclusion

ython

Validation croisée

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

ompromis

Validation croisée

Théorie de la décision

-PPV

Conclusion

ython

Références

Pseudo-code:

- 1. Définir les K folds de validation croisée
 - en pratique : un vecteur de longueur n avec des valeurs entre 1 et K affectant les n observations aux K folds
- 2. Pour k = 1 à K:
 - 2.1 mettre de côté la k-ième fold
 - 2.2 apprendre le modèle sur les (K-1) folds restantes
 - 2.3 appliquer le modèle sur les données de la k-ième fold
- 3. Evaluer les performances du modèle en comparant les valeurs réelles et prédites.
 - estimation globale ou par fold

Validation croisée et sélection de modèle

La validation croisée est notamment utile pour choisir le meilleur modèle entre plusieurs modèles candidats.

• e.g., des modèles + ou - complexes

Pseudo-code:

- 1. Définir un ensemble de modèles candidats
 - régression polynomiale : différents degrés de polynôme
 - ▶ k-PPV : différentes valeurs de k
 - **.**..
- 2. Pour chaque modèle :
 - 2.1 Appliquer la procédure de validation croisée
 - 2.2 Enregistrer les performances de prédiction
- 3. Choisir le meilleur modèle.
- 4. Le construire sur tout le jeu d'apprentissage.
- 5. L'appliquer sur le jeu de test et estimer sa performance

Outline

Apprentissage Statistique II

Introduction

Apprentissage apervisé

Illustrat

Régression linéaire Régression polynomiale

ompromis

Validation croisée

Théorie de la lécision

-PPV

Conclusion

Pythor

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis piais/varian

Validation

Théorie de la décision statistique

k-PPV

Conclusion

Pytho

Références

Théorie de la décision statistique

Données d'entrée : échantillon $\{(x_i, y_i)\}_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}$.

 \Rightarrow Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation

Théorie de la décision statistique

k-PPV

Conclusion

ython

Données d'entrée : échantillon $\{(x_i, y_i)\}_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}$.

 \Rightarrow Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Critère : une fonction de perte L (pour "loss") mesurant l'erreur entre y et f(x).

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

ais/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Données d'entrée : échantillon $\{(x_i, y_i)\}_{i=1,...,n} \in \mathcal{X} \times \mathcal{Y}$.

 \Rightarrow Objectif : apprendre une fonction $f: \mathcal{X} \to \mathcal{Y}$ permettant de prédire la réponse associée à une nouvelle observation.

Critère : une fonction de perte L (pour "loss") mesurant l'erreur entre y et f(x).

Typiquement:

► l'erreur quadratique pour la régression :

$$L(y, f(x)) = (y - f(x))^{2}$$

▶ le coût 0/1 pour la classification :

$$L(y, f(x)) = \mathbb{1}(y \neq f(x))$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> mpromis nis/variance

/alidation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Cadre probabiliste : on considère que nos observations (x_i, y_i) sont des variables aléatoires régies par une loi jointe P(X, Y).

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

Cadre probabiliste : on considère que nos observations (x_i, y_i) sont des variables aléatoires régies par une loi jointe P(X, Y).

 \Rightarrow L'objectif de l'apprentissage supervisé est donc de trouver la fonction f minimisant l'espérance de la fonction de perte :

$$R(f) = E_{X,Y}[L(Y, f(X))],$$

à partir d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

alidation

Théorie de la décision statistique

k-PPV

Conclusion

ython

Apprentissage supervisé - formalisation

Cadre probabiliste : on considère que nos observations (x_i, y_i) sont des variables aléatoires régies par une loi jointe P(X, Y).

 \Rightarrow L'objectif de l'apprentissage supervisé est donc de trouver la fonction f minimisant l'espérance de la fonction de perte :

$$R(f) = E_{X,Y}[L(Y, f(X))],$$

à partir d'un échantillon $\{(x_i, y_i)\}$, i = 1, ..., n.

R(f) est appelée le risque (ou la perte) de la fonction f.

$$P_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$
 est le **risque empirique**.

Outline

Apprentissage Statistique II

Introduction

Apprentissago supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

'alidation roisée

Théorie de la décision statistique

k-PPV

Conclusion

Python

La quête du Graal : comment choisir f si on connaît P(X, Y)

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

> mpromis ais/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

La quête du Graal : comment choisir f si on connaît P(X, Y)

Cas de la régression et de la perte quadratique :

$$R(f) = E_{X,Y}[L(Y, f(X))]$$

= $E_{X,Y}[(Y - f(X))^2]$

- \Rightarrow meilleure solution : f(x) = E[Y|X = x]
 - ▶ la valeur moyenne que peut prendre Y sachant X
 - ▶ la "regression function"
 - ► NB : valable pour la perte quadratique
 - f(x) = median(Y|X = x) si L(Y, f(X)) = |Y f(X)|

Outline

Apprentissage Statistique II

Introduction

Apprentissage upervisé

llustratio

Régression linéaire Régression polynomiale

Compromis biais/variance

Validation croisée

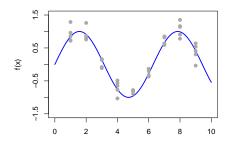
Théorie de la décision statistique

-PPV

Conclusion

Python

Illustration:



- ightharpoonup P(X,Y): vraie relation entre X et Y non déterministe
 - ici, $Y = f(X) + \epsilon$, $\epsilon \to \mathcal{N}(0, \sigma^2)$
 - en bleue : vraie fonction, en gris : réalisations bruitées
- On doit prendre une décision
- ▶ On minimise la perte quadratique en prenant E[Y|X]
 - ▶ l'espérance des points gris pour chaque valeur de *x*

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variand

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Régression et perte quadratique : démonstration

$$R(f) = E_{X,Y}[L(Y, f(X))]$$

= $E_{X,Y}[(Y - f(X))^2]$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustratio

Régression linéaire Régression polynomiale

> mpromis is/variance

/alidation

Théorie de la décision statistique

k-PPV

Conclusion

ython

Régression et perte quadratique : démonstration

$$R(f) = E_{X,Y}[L(Y, f(X))]$$

= $E_{X,Y}[(Y - f(X))^2]$

$$\Rightarrow$$
 on conditionne sur $X: E_{Y,X}(.) = E_X E_{Y|X}(.)$

$$R(f) = E_X E_{Y|X} [(Y - f(X))^2 | X]$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

> mpromis ais/variance

alidation

Théorie de la décision statistique

k-PPV

Conclusion

ython

Régression et perte quadratique : démonstration

$$R(f) = E_{X,Y}[L(Y, f(X))]$$

= $E_{X,Y}[(Y - f(X))^2]$

$$\Rightarrow$$
 on conditionne sur $X: E_{Y,X}(.) = E_X E_{Y|X}(.)$

$$R(f) = E_X E_{Y|X} [(Y - f(X))^2 | X]$$

 \Rightarrow on minimise pour chaque valeur x prise par X:

$$f(x) = \arg\min_{c} E_{Y|X} [(Y - c)^{2} | X = x]$$
$$= E[Y|X = x]$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustratio

Régression linéaire Régression polynomiale

> mpromis is/variance

Validation croisée

Théorie de la décision statistique

-PPV

Conclusion

ython

La quête du Graal : comment choisir f si on connaît P(X, Y)

Cas de la classification et de la perte 0/1:

$$R(f) = E_{X,Y}[L(Y, f(X))]$$

= $E_{X,Y}[\mathbb{1}(Y \neq f(X))]$

$$\Rightarrow$$
 meilleure solution : $f(x) = \arg \max_{k=1,...,K} P(Y = C_k | X = x)$

- \triangleright la classe la plus vraisemblable sachant X
- ▶ le classifieur de Bayes
- ► NB : valable pour la perte / le coût 0/1
 - ightharpoonup se généralise pour des coûts arbitraires $L(C_i, C_j)$

Outline

Apprentissage Statistique II

Introduction

Apprentissage upervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/variance

/alidation roisée

Théorie de la décision statistique

k-PPV

Conclusion

Python

Illustration : P(Y = k | X = x)

▶ pour une valeur x donnée et K = 4 catégories



- ightharpoonup P(X,Y): vraie relation entre X et Y non déterministe
- ► On doit prendre une décision
- ► Erreur : somme des probabilités des choix qu'on rejette
- ▶ Minimisée si on choisit la probabilité la plus élevée

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

iais/variand

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Classification et perte 0/1 : démonstration

$$R(f) = E_{X,Y}[L(Y, f(X))] = E_{X,Y}[\mathbb{1}(Y \neq f(X))]$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> mpromis is/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

Python

Classification et perte 0/1 : démonstration

$$R(f) = E_{X,Y}[L(Y, f(X))] = E_{X,Y}[\mathbb{1}(Y \neq f(X))]$$

 \Rightarrow on conditionne sur $X: E_{Y,X}(.) = E_X E_{Y|X}(.)$

$$R(f) = E_X E_{Y|X} [\mathbb{1}(Y \neq f(X)|X]]$$
$$= E_X \sum_{k=1}^K \mathbb{1}(C_k \neq f(X)) P(Y = C_k|X)$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Classification et perte 0/1 : démonstration

$$R(f) = E_{X,Y}[L(Y, f(X))] = E_{X,Y}[\mathbb{1}(Y \neq f(X))]$$

 \Rightarrow on conditionne sur $X : E_{Y,X}(.) = E_X E_{Y|X}(.)$

$$R(f) = E_X E_{Y|X} [\mathbb{1}(Y \neq f(X)|X]]$$
$$= E_X \sum_{k=1}^K \mathbb{1}(C_k \neq f(X)) P(Y = C_k|X)$$

 \Rightarrow on minimise pour chaque valeur x prise par X:

$$f(x) = \arg\min_{c} \sum_{k=1}^{K} \mathbb{1}(C_k \neq c) P(Y = C_k | X = x)$$

$$= \arg\max_{k=1,\dots,K} P(Y = C_k | X = x)$$

Outline

Apprentissage Statistique II

Introduction

pprentissage upervisé

luctrotio

Régression linéaire Régression polynomiale

> mpromis is/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

Théorie de la décision statistique

En pratique...

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

ompromis ais/varianc

Validation

Théorie de la décision statistique

k-PPV

Conclusion

.

Théorie de la décision statistique

En pratique... on ne connaît pas P(X, Y)!!

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation

Théorie de la décision statistique

k-PPV

Conclusion

Python

Théorie de la décision statistique

Outline

Apprentissage

Statistique II

Apprentissage

Illustrati

Régression linéaire Régression polynomiale

ais/variand

Validation

Théorie de la décision statistique

k-PPV

Conclusion

vthon

Références

En pratique... on ne connaît pas P(X, Y)!!

Intérêt de cette démarche (théorique) :

- concevoir des algorithmes
 - définition d'estimateurs + stratégies d'estimation
- analyser des algorithmes
 - e.g., se comparer au classifieur de Bayes par simulations
 - étudier performance en fonction de n

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/varian

Validation croisée

Théorie de l

k-PPV

Conclusion

Python

Références

L'algorithme des **k** plus proches voisins

Algorithme des k-PPV

Algorithme des k-plus proches voisins :

- 1. trouver les k observations x_i les plus proches de l'observation x' à classifier
- 2. définir f(x') en fonction des réponses y_i des k-PPV
 - régression : valeur moyenne
 - classification : vote majoritaire
- ⇒ le B-A BA des algorithmes de prédiction

Outline

Apprentissage Statistique II

Introduction

Apprentissag supervisé

llustratio

Régression linéaire Régression polynomiale

ompromis ais/varianc

/alidation roisée

Théorie de la lécision

k-PPV

Conclusion

Pythor

Algorithme des k-PPV

Algorithme des k-plus proches voisins :

- 1. trouver les k observations x_i les plus proches de l'observation x' à classifier
- 2. définir f(x') en fonction des réponses y_i des k-PPV
 - régression : valeur moyenne
 - classification : vote majoritaire
- ⇒ le B-A BA des algorithmes de prédiction

Approche de mémorisation

- ▶ + : très simple à mettre en oeuvre
- : passage à l'échelle

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

/alidation roisée

Théorie de la décision

k-PPV

Conclusion

Python

Algorithme des k-PPV

Algorithme des k-plus proches voisins :

- 1. trouver les k observations x_i les plus proches de l'observation x' à classifier
- 2. définir f(x') en fonction des réponses y_i des k-PPV
 - ► régression : valeur moyenne
 - classification : vote majoritaire
- ⇒ le B-A BA des algorithmes de prédiction

Approche de mémorisation

- + : très simple à mettre en oeuvre
- : passage à l'échelle

Questions ouvertes:

▶ choix du critère de distance et de la valeur de k

Outline

Apprentissage Statistique II

Introduction

Apprentissa supervisé

llustratio

Régression linéaire Régression polynomiale

> ompromis ais/variand

/alidation roisée

Théorie de la lécision statistique

k-PPV

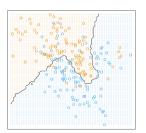
Conclusion

Python

Algorithme des k-PPV - complexité

Illustration tirée de Hastie et al. (2001) :

ightharpoonup à gauche : k = 15; à droite : k = 1.





Des petites valeurs de k conduisent à des modèles plus locaux et donc (en général) plus complexes.

Outline

Apprentissage Statistique II

Introduction

Apprentissage

Illustrat

Régression linéaire Régression polynomiale

Compromis iais/variance

alidation oisée

Théorie de la décision statistique

k-PPV

Conclusion

Python

k-PPV pour la régression :

$$\hat{f}(x) = \text{Average}(y_i | i \in N_k(x))$$

 \Rightarrow approxime directement la regression function E[Y|X]

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Hustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation

Théorie de la lécision statistique

k-PPV

Conclusion

Python

k-PPV pour la régression :

$$\hat{f}(x) = \text{Average}(y_i | i \in N_k(x))$$

 \Rightarrow approxime directement la regression function E[Y|X]

Nature de l'approximation :

- 1. espérance \rightarrow moyenne empirique
- 2. valeur ponctuelle \rightarrow voisinage (dans le conditionnement)
- $\Rightarrow {\sf convergence} \ {\sf asymptotique}$
 - $ightharpoonup n, k o +\infty$; k/n o 0

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation

Théorie de la décision statistique

k-PPV

Conclusion

Python

k-PPV pour la classification :

$$\hat{f}(x) = \mathsf{Majority}(y_i | i \in N_k(x))$$

$$= \arg\max_{l=1,\dots,K} \tilde{P}_l = \frac{1}{k} \sum_{i \in N_k(x)} \mathbb{1}(y_i = l)$$

⇒ approxime directement le classifieur de Bayes :

$$\arg\max_{l=1,\ldots,K} P(Y=C_l|X=x)$$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

> ompromis ais/variance

alidation

Théorie de la lécision tatistique

k-PPV

Conclusion

ython

k-PPV pour la classification :

$$\hat{f}(x) = \text{Majority}(y_i | i \in N_k(x))$$

$$= \arg \max_{l=1,...,K} \tilde{P}_l = \frac{1}{k} \sum_{i \in N_k(x)} \mathbb{1}(y_i = l)$$

 \Rightarrow approxime directement le classifieur de Bayes :

$$\arg\max_{I=1,\ldots,K} P(Y=C_I|X=x)$$

Nature de l'approximation :

- 1. probabilité o proportion empirique
- 2. valeur ponctuelle \rightarrow voisinage (dans le conditionnement)
- \Rightarrow convergence asymptotique
 - $ightharpoonup n, k o +\infty; k/n o 0$

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

ustration

Régression linéaire Régression polynomiale

Compromis biais/variance

/alidation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

En dépit de sa simplicité, l'algorithme des k-PPV :

- 1. approxime les bonnes fonctions
 - ► regression function & classifieur de Bayes
- 2. possède des propriétés de convergence
- ⇒ pourquoi chercher plus loin?

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variance

Validation

héorie de la

Théorie de la décision statistique

k-PPV

Conclusion

00110101011

Dáfássassas

En dépit de sa simplicité, l'algorithme des k-PPV :

- 1. approxime les bonnes fonctions
 - ► regression function & classifieur de Bayes
- 2. possède des propriétés de convergence
- ⇒ pourquoi chercher plus loin?

Car la convergence est asymptotique :

- $ightharpoonup n, k o +\infty$; k/n o 0
- ⇒ en pratique on dispose d'un nombre d'observations limité

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> mpromis ais/variance

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusion

ython

En dépit de sa simplicité, l'algorithme des k-PPV :

- 1. approxime les bonnes fonctions
 - ▶ regression function & classifieur de Bayes
- 2. possède des propriétés de convergence
- ⇒ pourquoi chercher plus loin?

Car la convergence est asymptotique :

- ▶ $n, k \rightarrow +\infty$; $k/n \rightarrow 0$
- ⇒ en pratique on dispose d'un nombre d'observations limité

(De plus, ça se complique en haute dimension)

"fléau de la dimension"

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

is/varianc

Validation croisée

Théorie de la décision statistique

k-PPV

Conclusio

Python

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/varianc

/alidation

Théorie de la lécision

L-PP\/

Conclusion

Duthon

Référence

Remarques et conclusions

Conclusion

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variand

Validation croisée

Théorie de la décision

DD\/

Conclusion

Python

Références

► Introduction aux fondements théoriques de l'apprentissage supervisé

- Complexité des modèles et sur-apprentissage
 - illustration avec régression polynomiale
- ► Compromis biais-variance
- Erreur de généralisation et validation croisée
- ► Théorie de la decision statistique
 - regression function et classifieur de Bayes
- ► Algorithme des *k*-ppv
 - classification et régression

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis piais/varianc

Validation

validatior croisée

Théorie de la lécision tatistique

k-PPV

Conclusio

Python

Références

Mise en oeuvre en Python

Python et Data Science

Packages fondamentaux :

NumPy : calcul matriciel

► MatPlotLib : visualisation

Pandas : manipulations de tableaux de données

Scikit-Learn : machine learning

⇒ Bonne introduction : Python Data Science Handbook (VanderPlas, 2017)

⇒ Ce cours : centré sur Scikit-Learn

▶ pré-requis : les bases de NumPy et MatPlotLib

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

Compromis piais/varian

/alidation

Théorie de la décision

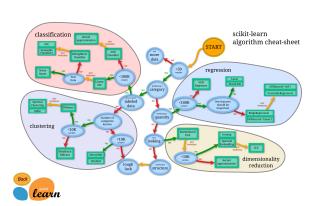
-PPV

Conclusion

Python

Scikit-Learn 5

- ▶ très populaire en machine-learning
- très complet
- simple à utiliser (API uniformisée, types standards)



Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis biais/varian

alidation

Théorie de la décision statistique

-PPV

Conclusi

Python

Scikit-Learn in a nutshell....

Statistique

Une collection de modules thématiques

- ► e.g., le module linear_model
- ▶ e.g., le module model_selection

contenant :

- 1. des classes définissant des estimateurs
 - ► conception objet : estimateurs = attributs + méthodes
 - e.g., la classe LinearRegression du module linear model
 - e.g., la classe PCA du module decomposition
- 2. des fonctions réalisant certains traitements
 - ► e.g., la fonction cross_val_score du module model_selection.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

Compromis iais/variance

/alidation

Théorie de la décision statistique

-PPV

Conclusion

Python

Scikit-Learn - estimateurs

API standardisée : les mêmes méthodes clés pour tous les estimateurs :

- fit : optimise le modèle à partir des données
- pour les estimateurs "de prédiction" :
 - predict : réalise la prédiction sur des données
 - ► e.g., régression linéaire, k-ppv
- pour les estimateurs "de transformation" :
 - transform : applique la transformation aux données (apprentissage ou nouvelles)
 - fit_transform : applique fit + transform aux données d'apprentissage
 - ► e.g, ACP

Attributs définis lors de l'initialisation par le constructeur.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrat

Régression linéaire Régression polynomiale

Compromis piais/variance

Validation

Théorie de la décision

-PPV

Conclusi

Python

Scikit-Learn - B-A BA

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

llustratio

Régression linéaire Régression polynomiale

ompromis ais/varian

Validation

Théorie de la décision

DDV

. . . .

Python

Références

Pour optimiser et appliquer un modèle :

1. importer la classe correspondante : :

```
from sklearn.linear_model import LinearRegression
```

2. instancier le modèle :

```
linReg = LinearRegression()
```

- ▶ NB : c'est ici qu'on spécifie des (hyper)paramètres
- e.g., régression avec ou sans intercept
- estimer "fitter" le modèle sur les données : linReg.fit(X,y)
- 4. appliquer le modèle sur des données :
 preds = linReg.predict(Xtest)
 - ▶ NB : ou la méthode transform pour l'ACP par exemple

Scikit-Learn - exemples

Régression linéaire :

```
# Load class
from sklearn.linear_model import LinearRegression
# instanciate model
linReg = LinearRegression()
# Learn model
linReg.fit(x,y)
# make predictions
lingReg.predict(x_test)
```

ACP:

```
# Load class
from sklearn.decomposition import PCA
# instanciate model - consider 2 components
pca = PCA(n_components = 2)
# learn model
pca.fit(X)
# transform (training) data
Xpca = pca.transform(X)
```

Outline

Apprentissage Statistique II

Introductio

Apprentissage

Illustrat

Régression linéaire Régression polynomiale

ompromis iais/variand

Validation

Théorie de la décision

atistique

k-PPV

Conclusio

Python

Scikit-Learn - TP1

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Illustrati

Régression linéaire Régression polynomiale

> ompromis ais/variand

Validation croisée

Théorie de la décision

k-PPV

Conclusio

Python

Références

Dans le TP1 nous manipulerons :

- 1. la classe PCA
 - ACP, module decomposition
- 2. la classe LinearRegression
 - régression linéaire, module linear_model
- 3. la classe PolynomialFeatures
 - expansion polynomiale, module preprocessing
- 4. la classe KNeighborsClassifier
 - algorithme des k-ppv, module neighbors

Références

- T. Hastie, R. Tibshirani, and J.. Friedman. *The Elements of Statistical Learning*. Springer, 2001.
- J. VanderPlas. *Python Data Science Handbook*. O'Reilly, 2017.

Outline

Apprentissage Statistique II

Introduction

Apprentissage supervisé

Ilustratio

Régression linéaire Régression polynomiale

Compromis piais/variance

/alidation

Théorie de la décision

DD\/

Conclusio

Python