Apprentissage Statistique II

Introduction

Architectures

Apprentissage Gradient descent

Régularisation
Data
augmentation
Transfer learning
En pratique

Conclusi

éférences

ack-up

Réseaux de Neurones & Deep Learning – 2/2

Master parcours SSD - UE Apprentissage Statistique II

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes

Apprentissage Statistique II

Introduction

Architectures

Apprentissage Gradient descent

Régularisation
Data
augmentation
Transfer learning
En pratique

Conclus

Références

Back-up

⇒ Aujourd'hui : apprentissage en pratique

La semaine dernière :

Architectures

- neurones artificiels et modèles linéaires
- perceptrons multi-couches
- ▶ réseaux convolutifs

Apprentissage Statistique II

Introduction

Architectures

Apprentissage Gradient descent

Régularisation
Data
augmentation
Transfer learning
En pratique

Conclusion

Référence:

Back-up

Apprentissage

- ► Descente de gradient & rétro-propagation
- Régularisation
- Augmentation de données
- ► Transfer learning
- En pratique

Apprentissage & réseaux de neurones

Apprentissage & RN : méthodes de descente de gradient stochastique (accélérées)

Descente de gradient pour minimiser J(w; X, y):

$$J(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \sum_{i=1}^{n} L(y_i, f(x_i))$$

- ▶ w = paramètres du réseau
- \blacktriangleright L(y, f(x)) =fonction de perte

$$\Rightarrow$$
 schéma itératif : $w_j^{(t+1)} = w_j^{(t)} - \eta \nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y})[j]$

$$\Rightarrow$$
 gradient : $\nabla_{\mathbf{w}} J(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \sum_{i=1}^{n} \nabla_{\mathbf{w}} L(y_i, f(x_i)).$

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent

augmentation
Transfer learning
En pratique

Conclusion

Descente de gradient stochastique

Descente de gradient (classique) :

gradient calculé sur tout le jeu de données

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \sum_{i=1}^{n} \nabla_{\mathbf{w}} L(y_i, f(x_i))$$

 \Rightarrow trop long si jeu de données conséquent

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation

augmentation Transfer learning En pratique

Conclusion

éférences

Descente de gradient stochastique

Descente de gradient (classique) :

gradient calculé sur tout le jeu de données

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \sum_{i=1}^{n} \nabla_{\mathbf{w}} L(y_i, f(x_i))$$

⇒ trop long si jeu de données conséquent

Descente de gradient stochastique :

- gradient calculé sur un couple (x_i, y_i) pris au hasard
- $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla_{\mathbf{w}} L(y_i, f(x_i))$

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation

Data augmentation Transfer learning En pratique

Conclusi

Références

Descente de gradient stochastique

Descente de gradient (classique) :

gradient calculé sur tout le jeu de données

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \sum_{i=1}^{n} \nabla_{\mathbf{w}} L(y_i, f(x_i))$$

⇒ trop long si jeu de données conséquent

Descente de gradient stochastique :

- ightharpoonup gradient calculé sur un couple (x_i, y_i) pris au hasard
- $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla_{\mathbf{w}} L(y_i, f(x_i))$
- ⇒ en pratique : approche par (mini) batch
 - gradient calculé au niveau du batch

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

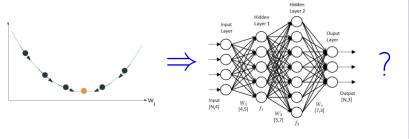
Gradient descent Régularisation

Data
augmentation
Transfer learning
En pratique

Conclusio

Références

Descente de gradient et réseaux de neurones



Outline

Apprentissage Statistique II

Introduction

Architectures

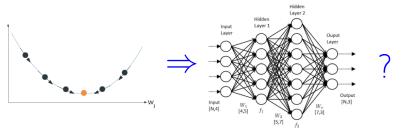
Gradient descent Régularisation

Data augmentation Transfer learning En pratique

Conclus

léférences

Descente de gradient et réseaux de neurones



$$\Rightarrow$$
 de multiples compositions : $f(x) = h_4(h_3(h_2(h_1(x))))$

⇒ comment calculer le gradient?

lci :

- ▶ $h_4(z) \sim \operatorname{softmax}(z)$
- ▶ $h_i(z) \sim \sigma(\langle w_i, z \rangle + b_i)$ pour i = 1, ..., 3.

Outline

Apprentissage Statistique II

Introductio

Architectures

\ nnvontices a

Gradient descent

Régularisation
Data
augmentation
Transfer learning
En pratique

Conclus

Référence

Algorithme de rétro-propagation

Solution : basée sur le théorème de dérivation des fonctions composées (chain rule of calculus) :

si
$$y = g(x)$$
 et $z = f(y) = f(g(x))$, alors $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent Régularisation

augmentation Transfer learning En pratique

Lonclusion

Références

Algorithme de rétro-propagation

Solution : basée sur le théorème de dérivation des fonctions composées (chain rule of calculus) :

si
$$y = g(x)$$
 et $z = f(y) = f(g(x))$, alors $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Ilustration (tirée de Goodfellow et al. (2016)) :

$$x = f(w), y = f(x), z = f(y)$$

$$z = f(f(x)) \Rightarrow \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

$$z = f(f(w)) \Rightarrow \frac{dz}{dw} = \frac{dz}{dy} \frac{dy}{dx} \frac{dx}{dw}$$

⇒ algorithme de rétro-propagation : propager les gradients de la couche de sortie vers la couche d'entrée

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation

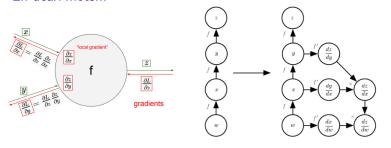
augmentation Transfer learning En pratique

Conclusion

Références

Algorithme de rétro-propagation

En deux mots



- 1. propagation des observations dans le réseau
- 2. calcul de la perte
- 3. rétro-propagation du gradient
- 4. descente de gradient et mise à jour les paramètres

Outline

Apprentissage Statistique II

Introductio

Architectures

Gradient descent

Régularisation
Data
augmentation
Transfer learning
En pratique

Références

Gradient descent
Régularisation
Data
augmentation
Transfer learning

En pratique Conclusion

D 1

Back-up

En pratique, deux étapes après avoir créé le modèle :

- 1. on compile le modèle
 - algo. de descente de gradient + fonction de perte ¹
- 2. on fitte le modèle sur les données
 - ► taille du batch et nombre d'epochs
 - ▶ 1 epoch = 1 passage sur tout le jeu de données

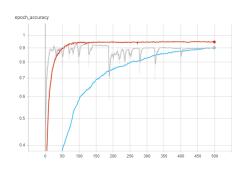
```
# create model
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=input_dim))
model.add(Dense(100, activation='relu'))
model.add(Dense(101, activation='softmax'))
# compile
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
# fit
model.fit(X_train_vec, Y_train, batch_size=32, epochs=10, verbose=1)
```

1. https://keras.io/optimizers/ et https://keras.io/losses40

Mise en oeuvre Keras

En pratique, un paramètre clé = le learning rate :

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \mathbf{\eta} \nabla_{\mathbf{w}} L(y_i, f(x_i))$$



- \blacktriangleright η trop faible
- η adapté
- η trop élevé

⇒ à vérifier / optimiser...ainsi que l'algorithme de descente de gradient en lui même (e.g., SGD vs Adam vs RMSprop).

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation

Data augmentation Transfer learning En pratique

Conclusio

Références

Apprentissage Statistique II

Gradient descent Régularisation augmentation Transfer learning

En pratique

Apprentissage

- Descente de gradient & rétro-propagation
- Régularisation
- Augmentation de données
- Transfer learning
- En pratique

Régularisation et réseaux de neurones

Outline
Apprentissage
Statistique II

Introduction

Architectures

.

Gradient descent Régularisation

Data augmentation Transfer learning

Transfer learning En pratique

00110101011

Back-up

Réseaux de neurones / deep-learning : nombreux paramètres

⇒ fort risque de sur-apprentissage.

Différentes stratégies pour régulariser un réseau de neurones

- ▶ weight-decay
- early stopping
- ► drop-out
- **....**

Weight-decay = stratégie de régularisation "classique"

▶ basée sur la norme du vecteur w de paramètres

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent Régularisation

Data augmentation

Transfer learning En pratique

conclusion

éférences

Weight-decay = stratégie de régularisation "classique"

- ▶ basée sur la norme du vecteur w de paramètres
- ⇒ fonction objective = risque empirique pénalisé :

$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(\mathbf{w})
= J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \lambda \Omega(\mathbf{w})$$

avec typiquement $\Omega(\mathbf{w}) = \frac{1}{2}||\mathbf{w}||_2^2$ ou $\Omega(\mathbf{w}) = ||\mathbf{w}||_1$.

Outline

Apprentissage Statistique II

Introduction

Architectures

oprentissag

Gradient descent

Régularisation

augmentation Transfer learning En pratique

Conclusio

Références

Weight-decay = stratégie de régularisation "classique"

- ▶ basée sur la norme du vecteur w de paramètres
- ⇒ fonction objective = risque empirique pénalisé :

$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(\mathbf{w})
= J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \lambda \Omega(\mathbf{w})$$

avec typiquement $\Omega(\mathbf{w}) = \frac{1}{2}||\mathbf{w}||_2^2$ ou $\Omega(\mathbf{w}) = ||\mathbf{w}||_1$.

Conséquence : modification de la descente de gradient.

Outline

Apprentissage Statistique II

Introduction

Architectures

oprentissas

Gradient descent

Régularisation
Data
augmentation

Transfer learning En pratique

Conclusion

Références

Terminologie "weight-decay" liée au cas $\Omega(\mathbf{w}) = \frac{1}{2}||\mathbf{w}||_2^2$

► le cas classique, historique

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent

Régularisation Data

augmentation Transfer learning En pratique

CONCIDENCIA

éférences

Terminologie "weight-decay" liée au cas $\Omega(\mathbf{w}) = \frac{1}{2}||w||_2^2$

▶ le cas classique, historique

Fonction objective :
$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \frac{\lambda}{2} \sum_{j=1}^{P} w_j^2$$

Outline

Apprentissage Statistique II

Introduction

Architectures

Gradient descent

Régularisation

augmentation Transfer learning En pratique

Conclusion

léférences

Terminologie "weight-decay" liée au cas $\Omega(\mathbf{w}) = \frac{1}{2}||w||_2^2$

▶ le cas classique, historique

Fonction objective :
$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \frac{\lambda}{2} \sum_{j=1}^{P} w_j^2$$

Gradient (par rapport à
$$w_j$$
) : $\nabla_{w_j} \tilde{J} = \nabla_{w_j} J + \lambda w_j$

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage
Gradient descent
Régularisation

augmentation Transfer learning En pratique

Conclusion

Référence

Terminologie "weight-decay" liée au cas $\Omega(\mathbf{w}) = \frac{1}{2}||w||_2^2$

▶ le cas classique, historique

Fonction objective :
$$\tilde{J}(\mathbf{w}; \mathbf{X}, \mathbf{y}) = J(\mathbf{w}; \mathbf{X}, \mathbf{y}) + \frac{\lambda}{2} \sum_{j=1}^{P} w_j^2$$

Gradient (par rapport à
$$w_j$$
) : $\nabla_{w_j} \tilde{J} = \nabla_{w_j} J + \lambda w_j$

Descente de gradient :

$$\begin{aligned} w_{j}^{(t+1)} &= w_{j}^{(t)} - \eta \nabla_{w_{j}} \tilde{J} \\ &= w_{j}^{(t)} - \eta (\nabla_{w_{j}} J + \lambda w_{j}^{(t)}) \\ &= (1 - \eta \lambda) w_{j}^{(t)} - \eta \nabla_{w_{j}} J \end{aligned}$$

 \Rightarrow "decay" de w_j d'un facteur $(1 - \eta \lambda)$ à chaque itération

▶ decay = "shrinkage"

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage
Gradient descent
Régularisation

augmentation Transfer learning En pratique

Conclusion

Référence

Mise en oeuvre Keras : le module regularizers

- ▶ kernel.regularizers. { 12, 11 et 11_12 }.
- à appliquer aux couches voulues (Dense et Conv)
- paramètre = λ

Exemple:

```
# import
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.regularizers import 12, 11
# build model
model = Sequential()
model.add(Conv2D(6, (5,5), padding = 'same', activation='relu', input_shape=(28,28,1)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(6, (5,5), activation='relu', kernel_regularizer=12(0.01)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dense(120, activation='relu'))
model.add(Dense(120, activation='softmax', kernel_regularizer=11(0.01)))
# show summary
model.summary()
```

 \Rightarrow couches à régulariser et valeurs de λ ... à optimiser!

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent Régularisation

Data augmentation Transfer learning En pratique

Conclusio

Référence

Stratégie early-stopping:

- utiliser une partie des données comme jeu de validation
- mesurer l'erreur de validation au fil des epochs
- ► arrêter l'apprentissage quand elle est minimale
- ⇒ très (le plus?) classique!

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent

Régularisation Data

augmentation Transfer learning En pratique

Officialion

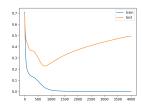
éférences

ack-un

Stratégie early-stopping:

- utiliser une partie des données comme jeu de validation
- mesurer l'erreur de validation au fil des epochs
- arrêter l'apprentissage quand elle est minimale
- ⇒ très (le plus?) classique!

Comportement type sans early-stopping 2:



 \Rightarrow objectif : s'arrêter vers \sim 750 epochs

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent Régularisation

Data augmentation Transfer learning

En pratique

Références

Early stopping : facile à mettre en oeuvre grâce au mécanisme de " callbacks" de Keras

Callback Keras:

- permet d'intéragir avec le processus d'apprentissage
 - exemple type : mesurer la performance du modèle
- spécifié lors de l'appel à la méthode fit() du modèle
 - on peut en spécifier plusieurs (dans une liste)
- ► nombreux call-backs disponibles
 - early stopping, sauver le meilleur modèle, sauver les performances dans un fichier .csv...
 - ▶ voir https://keras.io/callbacks/

⇒ le callback "early stopping" = EarlyStopping()

Outline

Apprentissage Statistique II

Introduction

Architectures

oprentissas

Gradient descent Régularisation

Data augmentation Transfer learning

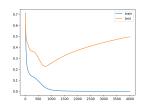
En pratique Conclusion

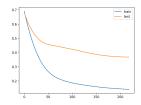
Référence

Exemple:

on suit la "validation loss", on s'arrête si elle est minimale

Résultat : arrêt à \sim 200 epochs





⇒ sensible aux minimum locaux

Outline

Apprentissage Statistique II

Introductio

Architecture

Apprentissag

Gradient descent Régularisation

Data augmentation Transfer learning En pratique

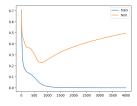
onclusion

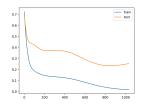
Références

Introduction d'un critère de patience :

⇒ nombre d'epochs sans amélioration à attendre

Résultat : arrêt à ~ 1000 epochs





- robuste aux minimum locaux
- mais l'erreur peut augmenter pendant la "patience"
- ⇒ à combiner avec le callback ModelCheckpoint()

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation

Data augmentation Transfer learning

En pratique
Conclusion

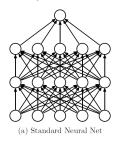
Références

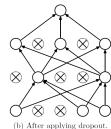
Back-up

9/40

Régularisation et "dropout"

Principe du dropout : "éteindre" des neurones ³





Chaque fois qu'on traite une instance lors de l'apprentissage :

- chaque neurone est "éteint" avec une probabilité p
 - qui peut être ajustée par couche
- ▶ l'instance est propagée et rétro-propagée
- ▶ elle contribue au gradient des neurones "actifs"

Outline

Apprentissage Statistique II

Introduction

Architecture

Gradient descent Régularisation

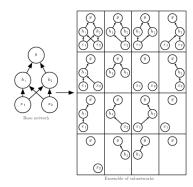
Data augmentation

Transfer learning En pratique

.

Régularisation et "dropout"

Interprétation du dropout : considérer un ensemble de réseaux



- bons résultats empiriques
- ▶ justifications théoriques (Srivastava et al. (2014)).
- ▶ intuitivement : limite la co-adaptation des neurones

Outline

Apprentissage Statistique II

Introduction

Architectures

Gradient descent Régularisation

Data augmentation Transfer learning

Transfer learning

References

Régularisation et "dropout"

Mise en oeuvre Keras : un type de couche dédiée

```
# import
from keras.models import Sequential
from keras.layers import Dense, Dropout
# define parameters
n_classes = 100
p = 100
# build model
model = Sequential()
model.add(Dense(6a, activation='relu', input_dim=p))
model.add(Dense(100, activation='relu'))
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

```
# import
from keras.models import Sequential
from keras.layers import Dense, Dropout
# define parameters
n_classes = 18
p = 100
# build model
model = Sequential()
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(n_classes, activation='softmax'))
model.add(Dense(n_classes, activation='softmax'))
model.summary()
```

- paramètre = taux de neurones d'entrée à éteindre
 - ▶ ~ probabilité p
 - + nombre de variables si couche d'entrée
- ▶ on peut mettre les couches où on veut
 - couche d'entrée et/ou couches internes
 - pas forcément toutes les couches
- on peut ajuster le taux dans les couches
 - e.g. 0.2 en entrée, 0.5 en interne (Goodfellow et al., 2016)

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent

Régularisation Data

augmentation Transfer learning En pratique

Conclusion

Reference

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent Régularisation

Data
augmentation
Transfer learning

Transfer learning En pratique

Conclusion

Références

Back-up

Apprentissage

- ► Descente de gradient & rétro-propagation
- Régularisation
- Augmentation de données
- ► Transfer learning
- En pratique

Augmentation de données

Augmentation de données (data augmentation) = appliquer des transformations aux données originales pour augmenter la taille du jeu d'apprentissage.

⇒ pour images : rotations, translations, changements d'échelle, symétrie, ...

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissag

Gradient descent Régularisation

Data augmentation

Transfer learning En pratique

Conclusion

Références

Augmentation de données

Mise en oeuvre Keras : classe ImageDataGenerator

▶ du module keras.preprocessing.image

Un générateur : génère un batch à la demande pour SGD

▶ e.g., pour ne pas charger toutes les données en mémoire

Un image-générateur : génère un batch d'images en leur appliquant des transformations

- types de transformation spécifiés dans le constructeur
- appliquées aléatoirement à chaque image
- ⇒ s'utilisent via la méthode fit_generator() du modèle.

Exemple : https://blog.keras.io/

building-powerful-image-classification-models-using-very-little-data.

Apprentissage Statistique II

Introduction

Architectures

Apprentissage Gradient descent

Régularisation Data augmentation

Transfer learning En pratique

CONCIDION

Référence:

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation

Data augmentation

Transfer learning En pratique

Conclusion

Références

Back-up

Apprentissage

- ▶ Descente de gradient & rétro-propagation
- Régularisation
- Augmentation de données
- ► Transfer learning
- En pratique

"Applications" Keras : modèles d'imagerie pré-entrainés

► (sur ImageNet)

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-

\Rightarrow mise à disposition pour :

- prédiction et/ou "feature extraction"
- les adapter à son problème : transfer-learning

Outline

Apprentissage Statistique II

Introduction

Architecture

Gradient descent Régularisation Data augmentation

Transfer learning En pratique

eterences

Transfer learning (ou "fine tuning") :

- 1. charger modèle pré-entrainé (sur ImageNet)
- 2. re-apprendre certaines couches sur ses données

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation Data augmentation

Transfer learning En pratique

Conclusion

éférences

Outline

Apprentissage Statistique II

Gradient descent Régularisation augmentation

Transfer learning En pratique

Transfer learning (ou "fine tuning"):

- 1. charger modèle pré-entrainé (sur ImageNet)
- 2. re-apprendre certaines couches sur ses données

⇒ typiquement :

- garder les couches de convolution figées
 - ▶ "feature extraction" générique
- ré-apprendre un MLP à la suite
 - couche de sortie en lien avec l'application
- éventuellement, ré-apprendre également les dernières couches de convolution

Exemple: transfer-learning basé sur le modèle VGG16

```
# import
from keras.layers import Dense, Flatten
from keras.models import Sequential
from keras.applications.vgg16 import VGG16
# specify size of input data & number of classes
patch size = 64
nb_classes = 10
# Load vgq16 model
conv base = VGG16(weights='imagenet', include top=False,
                  input shape = (patch size,patch size,3))
# create model with vag16 + mlp
model = Sequential()
model.add(conv base)
model.add(Flatten())
model.add(Dense(units = 100. activation = 'relu'))
model.add(Dense(nb classes, activation = 'softmax'))
# freeze convolutional lavers
conv_base.trainable = False
# show summary
model.summarv()
```

Layer (type)	Output	Shape	Param #	
vgg16 (Model)	(None,	2, 2, 512)	14714688	
flatten_6 (Flatten)	(None,	2048)	0	
dense_11 (Dense)	(None,	100)	204900	
dense_12 (Dense)	(None,	10)	1010	
Total params: 14,920,598 Trainable params: 205,910 Non-trainable params: 14,71	4,688			

\Rightarrow A noter :

include_top=False

 ne pas charger le MLP du modèle initial

conv_base.trainable=False

 ne pas ré-apprendre les couches de convolution

Outline

Apprentissage Statistique II

Introduction

Architectures

prentissage

Gradient descent Régularisation Data augmentation

Transfer learning En pratique

Conclusion

Références

Outline

Apprentissage Statistique II

Gradient descent Régularisation augmentation

Transfer learning En pratique

Apprentissage

- Descente de gradient & rétro-propagation
- Régularisation
- Augmentation de données
- Transfer learning
- En pratique

En pratique...

My two cents:

- pour des problèmatiques d'imagerie
 - 1. partir de modèles existants par transfer-learning
 - 2. mettre en place des procédures de data-augmentation
- essayer différentes structures de réseaux
 - nombre et paramètres des couches de convolution
 - ▶ nombre et taille des couches du MLP
- trouver une structure prometteuse
 - compromis performance et # paramètres
- optimiser les paramètres de l'apprentissage
 - paramètres du SGD, introduction de dropout, ...
- considérer beaucoup d'epochs et utiliser une combinaison de call-backs "early-stopping" et "sauvegarde du meilleur modèle"
 - EarlyStopping() et ModelCheckPoint()

Outline

Apprentissage Statistique II

Introduction

Architectures

pprentissage

Gradient descent Régularisation Data augmentation Transfer learning En pratique

amalian atau

Référence

S - - I - - - - -

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent
Régularisation
Data
augmentation
Transfer learning
En pratique

Conclusion

Références

Back-up

Conclusion

En résumé...

Réseaux de neurones / deep-learning : des modèles performants et maintenant incontournables

- des méthodes datant des années 90
- remises au goût du jour récemment (calcul et données)

Ce cours : une introduction!

- quelques architectures clés
 - neurone artificiel, MLPs, CNNs
- quelques éléments pour l'apprentissage
 - ▶ back-propagation, SGD, régularisation, transfer-learning
- des exemples de mise en oeuvre avec Keras
 - ► API "séquentielle"

⇒ très simple à mettre en oeuvre / à ré-utiliser.

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

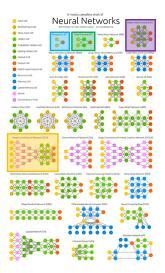
Gradient descent Régularisation Data augmentation Transfer learning En pratique

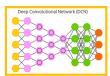
Conclusion

Références

De nombreuses perspectives...

Ce cours:





Outline

Apprentissage Statistique II

Introduction

Architecture

Annrentissage

Gradient descent Régularisation Data augmentation Transfer learning En pratique

Conclusion

Références

Perspectives - quelques pistes pour aller plus loin

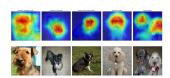
 réseaux récurrents (type LSTM) pour l'analyse de séquences (e.g., texte, parole, séries temporelles)

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

auto-encoders pour l'analyse non-supervisée

 comment interpréter les prédictions d'un réseau de neurones (e.g., via class-activation maps)



Outline

Apprentissage Statistique II

Introduction

Architectures

pprentissage

Gradient descent Régularisation Data augmentation Transfer learning En pratique

Conclusion

Référence

Pour conclure

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage Gradient descent

Régularisation
Data
augmentation
Transfer learning
En pratique

Conclusion

Référence

ack-up

Réseaux de neurones / deep-learning : ubiquitaires

- modèles élégants et performants (et à la mode)
- approche "end to end" générique

Néanmoins : des modèles difficiles à paramétrer

- beaucoup de paramètres
- fonctions objectives non-convexes
- hyper-paramètres pas toujours évidents à régler
- ⇒ risque d'overfitting si quantité de données limitée!

Mon conseil : ne pas oublier trop vite les bonnes vieilles SVMs, forêts aléatoires et régressions (logistique) pénalisées!

Références

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation Data augmentation Transfer learning En pratique

Conclusion

Références

ack-up

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016.

http://www.deeplearningbook.org.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

Outline

Apprentissage Statistique II

Introduction

Architectures

Apprentissage

Gradient descent Régularisation Data augmentation Transfer learning En pratique

Conclus

Références

Back-up

38/40

Théorème d'approximation universelle

Tiré d'un cours de Stéphane Canu 4 :

MLP with one hidden layer as universal approximator

Universal approximation theorem for MLP

- given any $\varepsilon > 0$
- ullet for any continuous function f on compact subsets of ${
 m I\!R}^p$
- ullet for any admissible activation function σ (not a polynomial)
- there exists h, $W_1 \in \mathbb{R}^{p \times h}$, $b \in \mathbb{R}^h$, $c \in \mathbb{R}$ and $w_2 \in \mathbb{R}^h$ such that

$$||f(x) - w_2\sigma(W_1x + b) + c||_{\infty} \le \varepsilon$$

SVM, Boosting and Random Forest also

Approximation theory of the MLP model in neural networks, A Pinkus - Acta Numerica, 1999

The power of depth for feedforward neural networks, R. Eldan and O. Shamir, 2015.

Outline

Apprentissage Statistique II

Introduction

Architectures

^ ---------------

Gradient descent Régularisation Data

augmentation Transfer learning En pratique

onclusion

Références

CNN - Architectures modernes

Depuis AlexNet⁵:

2012 Teams	%error	2013 Teams	%error	2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7	GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7
		Adobe	15.2	TTIC-ECP	10.2
		VGG (Oxford)	15.2	XYZ	11.2
		VGG (Oxford)	23.0	UvA	12.1

shallow approaches

deep learning

Y. LeCun StatLearn tutorial

⇒ forte adhésion de la communauté "computer vision"!

5. https://github.com/StephaneCanu/Deep_learning_lecture/40

Outline

Apprentissage Statistique II

Introduction

Architecture

.....

Gradient descent Régularisation Data augmentation Transfer learning En pratique