#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

IIV et motif

RNN, GRU & LSTM

Introduc

RNN CRIL: Cated

Recurrent Units
LSTM: Long Short
Term Memory

. .

Références

# Deep Learning et séquences génomiques

Master parcours SSD - UE Apprentissage Statistique II

Pierre Mahé - bioMérieux & Université de Grenoble-Alpes cours préparé en collaboration avec Meriem El Azami (bioMérieux)

#### Outline

## Apprentissage Statistique II

## Introduction

Profils de k-mers

CNN et mot

## RNN, GRU & LSTM

Introduct

Introduction

GRU : Gated Recurrent Units

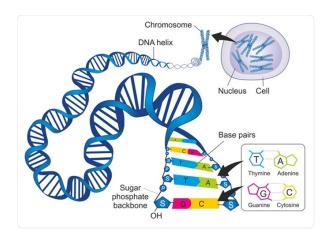
> LSTM : Long Short Term Memory

Conclusion

Références

# 2/61

# Séquences biologiques - ADN



- ► molécule d'ADN ~ une séquences de lettres A,T,G,C
  - nucléotides ou bases
- **p** génome humain  $\sim 3 \times 10^9$  bases

#### Outline

## Apprentissage Statistique II

#### Introduction

Profils de k-mers

CNN et mot

## RNN, GRU & LSTM

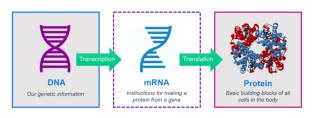
#### Introduc

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

References

# Séquences biologiques - ADN, ARN et protéines



- ▶ gène : portion d'ADN qui "code" pour un ARN messager
- ► ARNm ~ séquences de bases A,U,G,C
- protéine : molécule obtenue à partir d'un ARNm
  - une séquence d'acides aminés : alphabet de taille 20
  - ightharpoonup 1 triplet de nucléotides ightarrow 1 acide aminé

Outline

Apprentissage Statistique II

## Introduction

Profils de k-mers

CNN et moti

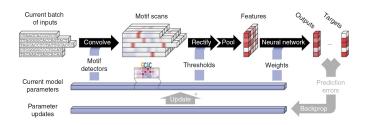
# RNN, GRU &

Introduct

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

onclusion

## Régulation génétique :



► Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning (Alipanahi et al., 2015)

## Outline

## Apprentissage Statistique II

#### Introduction

Profils de k-mers

NN et motifs

# RNN, GRU &

#### S I M ntroduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

## Annotation de protéines :

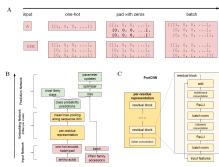


Figure 6: Architecture descriptions of neural networks. (A) Adding padding to a sequence for batching. (B) The model architecture shared by all neural networks includes the Input (red), Embedding (yellow), and Prediction (green) Networks. (C) ResNet architecture used by the ProtCNN models.

► Using Deep Learning to Annotate the Protein Universe (Bileschi et al., 2019).

#### Outline

#### Apprentissage Statistique II

#### Introduction

Profils de k-mers

NN et motif

# RNN, GRU &

Introdu

GRU : Gated Recurrent Units LSTM : Long Short

Term Memory
Conclusion

# Classification taxonomique :

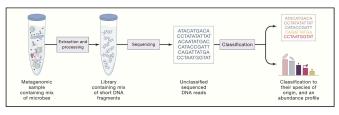


Figure 1. Processing Steps to Go from a Complex Metagenomic Sample to an Abundance Profile of Sample Content

► DeepMicrobes: taxonomic classification for metagenomics with deep learning (Liang et al., 2020).

### Outline

#### Apprentissage Statistique II

#### Introduction

Profils de k-mers

NN et motif

## RNN, GRU &

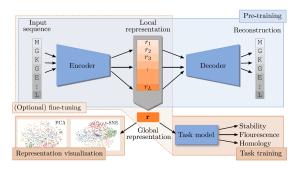
Introduc

RNN GRU: Gat

Recurrent Units LSTM : Long Short Term Memory

Concidence

## "Design" de séquences biologiques :



- Design by adaptive sampling (Brookes and Listgarten, 2018).
- ▶ What is a meaningful representation of protein sequences? (Detlefsen et al., 2021).

#### Outline

## Apprentissage Statistique II

#### Introduction

Profils de k-mers

CNN et moti

# RNN, GRU &

Introducti RNN

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

Conclusion

# Représentation de séquences

Une question centrale : comment représenter ces séquences

#### Outline

## Apprentissage Statistique II

#### Introduction

Profils de k-mers

CNN et moti

# RNN, GRU & LSTM

Introduction

RNN GRU : Gate

Recurrent Units LSTM : Long Short Term Memory

Conclusion

# Représentation de séquences

# Outline Apprentissage Statistique II

## Une question centrale : comment représenter ces séquences

## ⇒ différentes stratégies tirées du NLP et/ou de l'imagerie :

- 1. "bag of words" & profils de k-mers
  - + : simple à mettre en oeuvre
  - : perte de l'information séquentielle
- 2. CNN pour la détection de motifs génomiques
  - + : expressivité et interprétabilité
  - : difficile de capturer les interactions distantes
- 3. réseaux récurrents type LSTM
  - + : meilleure prise en compte de la nature séquentielle
  - : plus coûteux à mettre en oeuvre
- 4. modèles d'attention et "transformers"

#### Introduction

Profils de k-mers

NN et moti

## RNN, GRU &

Introduct

GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

Conclusion

#### Outline

## Apprentissage Statistique II

Profils de k-mers

Introduction

Recurrent Units LSTM: Long Short

Term Memory

# Architectures

- ► Bag-of-words & profils de k-mers
- ► CNNs & détection de motifs
- Réseaux récurrents, GRU & LSTM
- ► Transformers

## k-mers

k-mer : une suite de k nucléotides dans une séquence d'ADN



- ▶ jusqu'à 4<sup>k</sup> k-mers distincts
- ightharpoonup L-k+1 k-mers pour une séquence de longueur L

- lacktriangle un k-mer  $\sim$  un mot de longueur k
- ightharpoonup approche "bag of words" ightharpoonup "profil de k-mers"

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et mot

RNN, GRU &

Introducti

GRU : Gated Recurrent Units LSTM : Long Short Term Memory

Conclusion

Principe : se ramener à une représentation vectorielle simple

▶ point d'entrée d'algorithmes "standards" ou MLP

#### Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

RNN, GRU & LSTM

Introduction

GRU : Gated Recurrent Units LSTM : Long Short Term Memory

Conclusion

Principe : se ramener à une représentation vectorielle simple

▶ point d'entrée d'algorithmes "standards" ou MLP

Formellement, pour une séquence x de longueur L:

$$x \in \{A,T,G,C\}^L \Rightarrow \Phi(x) \in \mathbb{R}^{4^k}$$

- $\Rightarrow$  chaque dimension de  $\Phi(x)$  correspond à un k-mer
  - $ightharpoonup \Phi_u(x)$  peut compter les occurrences du k-mer u
  - $ightharpoonup \Phi_u(x)$  peut simplement coder sa présence / absence
  - on peut autoriser des mismatches dans les occurrences

# Avantage et inconvénient :

- + : très simple à mettre en oeuvre!
  - e.g., fenêtre glissante + dictionnaire python
- ▶ : on perd toute l'information séquentielle

## Challenge pour les séquences ADN : la taille du dictionnaire

- k = 5 : 1.024
- k = 8:65.536
- k = 11 : 4.194.304

 $\Rightarrow$  utilisation de k-mers "canoniques" pour exploiter la complémentarité des brins d'ADN

- même indice pour un k-mer et son reverse-complément
- ightharpoonup vocabulaire de taille  $4^k/2$  si k impair

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

LSTM Introduction

RNN GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

CONCIUSION

Limitation fondamentale de l'approche bag-of-words / profils de k-mers : pas de métrique de similarité entre k-mers

▶ soit parfaitement identiques ou complètement différents

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

VN et moti

RNN, GRU &

ntroduction

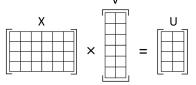
GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

Limitation fondamentale de l'approche bag-of-words / profils de k-mers : pas de métrique de similarité entre k-mers

soit parfaitement identiques ou complètement différents

Extension : intégrer des représentations continues des k-mers



- ▶  $X \in \mathbb{R}^{n \times 4^k}$ : profils de k-mers, n séquences,  $4^k$  variables
- $ightharpoonup V \in \mathbb{R}^{4^k imes d}$  : représentation ou "embeddings" des k-mers
- ▶  $U \in \mathbb{R}^{n \times d}$ : profils d'"embeddings" de k-mers

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU &

Introducti

GRU: Gated Recurrent Units LSTM: Long Short

Term Memory
Conclusion

# Embeddings de k-mers : comment construire la matrice V?

 $ightharpoonup [4^k imes d]$  : les représentations en dimension d des k-mers

## ⇒ Deux stratégies :

- supervisée : apprentissage "end to end" de la matrice en lien avec la tâche de prédiction
- non-supervisée : apprentissage générique à partir de données externes + transfer learning

⇒ un élément clé des architectures plus complexes à venir!

► CNN, LSTM, transformers

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et mot

RNN, GRU &

Introductio

GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

onclusion

# Apprentissage d'embeddings : approche supervisée

# Apprentissage end-to-end via la couche Keras Embedding() :

```
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Embedding
# specify parameters
                # k-mer Lenath
input dim = 4**k # Length of input vectors
embed dim = 64 # embedding dimension
n classes = 10
              # number of classes
# define model
mlp - Sequential()
mlp.add(Embedding(input dim-input dim. output dim = embed dim))
mlp.add(Dense(n classes, activation='softmax'))
mlp.summary()
Model: "sequential"
Layer (type)
                          Output Shape
                                                  Param #
embedding (Embedding)
                          (None, None, 64)
dense (Dense)
                          (None, None, 10)
_____
Total params: 66,186
Trainable params: 66,186
Non-trainable params: 0
```

la fonction de perte

- embedding en dim. 64 des 5-mers + régression multinomiale
- $ightharpoonup 4^k \times d$  paramètres dans la couche Embedding
- entrée du réseau : suite d'indices dans le dico.
- ajouter une couche de pooling pour avoir une représentation dans  $\mathbb{R}^d$

⇒ matrice de projection apprise par descente de gradient de

Outline

## Apprentissage Statistique II

Profils de k-mers

Recurrent Units LSTM: Long Short Term Memory

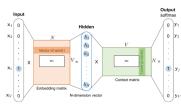
# Apprentissage d'embeddings : approche non-supervisée

Approche non-supervisé : plusieurs algorithmes type word2vec

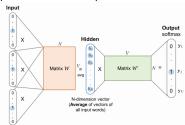
word2vec : un MLP à 2 couches appris sur une tâche de classification "virtuelle" pour capturer le sens des mots

"Quel chouette cours d'apprentissage statistique"

## prédire le contexte à partir du mot central



prédire le mot central à partir du contexte



Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU &

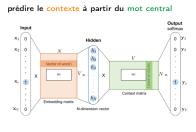
troductio

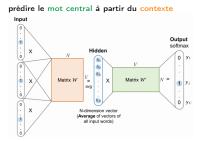
GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

## Word2vec in a nutshell...

## "Quel chouette cours d'apprentissage statistique"





- ▶ modèle de classification multiclasse : 1 mot = 1 classe
- ▶ 1 couche cachée avec activation linéaire
- deux matrices d'embeddings : en entrée et en sortie
  - mot central et contexte, peuvent être les mêmes
- appris sur de nombreux couples (mot central; contexte)

Outline

## Apprentissage Statistique II

Introduction

## Profils de k-mers

NN et mot

## RNN, GRU &

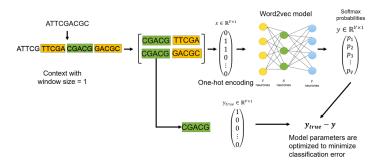
## ntroduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

## Conclusion

## Word2vec et k-mers

## Apprentissage word2vec sur des k-mers :



- on tire des k-mers (centraux + contexte) sur des bases de données externes (e.g., génomes complets ou gènes)
- on apprend le modèle word2vec
- on utilise les embeddings comme matrice de projection "statique" ou en initilisation d'une couche Embedding()

Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU &

Introduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclus

References

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

## CNN et motifs

RNN, GRU & LSTM

Introduc

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

Conclusion

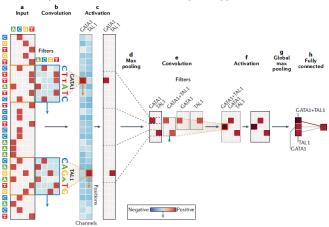
Références

# Architectures

- ► Bag-of-words & profils de k-mers
- ► CNNs & détection de motifs
- ► Réseaux récurrents, GRU & LSTM
- ► Transformers

# CNN et séquences génomiques

Illustration (tirée de Eraslan et al. (2019)) :



 $\Rightarrow$  généralisation des CNNs à une information séquentielle

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

#### CNN et motifs

## RNN, GRU &

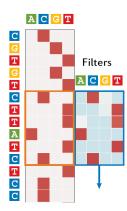
LSTM

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short

Term Memory
Conclusion

# CNN et séquences génomiques

Transformation des séquences à une "image" 2D par one-hot encoding des bases A,C,G,T:



- lacksquare 1 séquence de longueur L o une matrice [L imes 4]
- ▶ masques de convolution : matrices de dimension  $[w \times 4]$

Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

## CNN et motifs

# RNN, GRU &

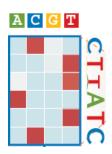
Introduction

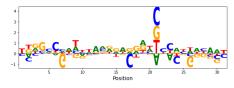
RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

## CNN et détection de motifs

## Un masque de convolution $\sim$ un motif probabiliste :





représentation en "sequence logo"

## ⇒ définit une fonction de score le long de la séquence

- contribution positive / négative d'une base à une position donnée en fonction de son poids dans le masque
- score élevé du masque à une position donnée si les bases de poids élevé sont présentes dans le bon ordre

Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et motifs

RNN, GRU &

Introduction

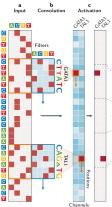
GRU : Gated Recurrent Units LSTM : Long Short Term Memory

Conclusion

References

## CNN et détection de motifs

1ère couche de convolution : détection de motifs probabilistes



Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et motifs

RNN, GRU &

LSTM

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short

Term Memory

Conclusion

Références

⇒ quelle stratégie suivre pour la suite de l'architecture?

# Deep vs shallow architectures?

## Stratégie "shallow":

- ▶ 1 couche de convolution + couche(s) dense(s)
- (avec pooling global ou local pour réduire la dimension)
- ⇒ + : interprétabilité du modèle
  - ▶ features = "motifs probabilistes" + interactions via MLP

## Stratégie "deep" :

- cascade de convolution / pooling + couche(s) dense(s)
- ⇒ + : expressivité du modèle
  - ► combinaison spatiale de "motifs probabilistes"
- ⇒ : perte d'interprétabilité du modèle

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

## CNN et motifs

RNN, GRU & LSTM

LSTM Introduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

## En pratique...

On préfère parfois travailler à partir d'un alignement multiple.

Sequence1 Sequence2 Sequence3 Sequence4

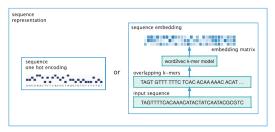
Sequence5

```
-TCAGGA-TGAAC----
ATCACGA-TGAACC---
ATCAGGAATGAATCC--
-TCACGATTGAATCGC-
-TCAGGAATGAATCGCM
```

▶ alphabet de taille 5 :  $\{A, C, G, T, -\}$ 

On "padde" ou on tronque les séquences de taille variables.

On peut travailler à partir de k-mers et d'embeddings 1.



1. Illustration tirée de Trabelsi et al. (2019).

#### Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et motifs

RNN, GRU &

ntroduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

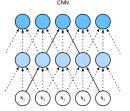
onclusion

# CNN et séquences génomiques

CNN et génomique : beaucoup d'applications depuis 2015.

▶ identification "end to end" de motifs génomiques

Une limitation fondamentale néanmoins : difficile de capturer des interactions distantes dans les séquences



- ⇒ utilisation d'architectures dédiées aux séquences :
  - réseaux récurrents type GRU et LSTM
  - mécanismes d'attention type "transformers"

(parfois combinées avec des CNNs)

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et motifs

RNN, GRU &

Introduct

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

#### Outline

## Apprentissage Statistique II

## RNN, GRU & LSTM

Recurrent Units LSTM: Long Short

Term Memory

# Architectures

- ► Bag-of-words & profils de k-mers
- ► CNNs & détection de motifs
- Réseaux récurrents, GRU & LSTM
- ► Transformers

# Qu'est ce qu'une séquence?

## Exemples de séquences :



Texte

"Quel chouette cours d'apprentissage statistique"

Sequence génomique

ACCTGCTGCCATGCT

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

RNN, GRU & LSTM

## Introduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

# Qu'est ce qu'une séquence?

## Exemples de séquences :



Texte

Sequence génomique

"Quel chouette cours d'apprentissage statistique"

ACCTGCTGCCATGCT

## ⇒ propriétés des séquences :

- observations non i.i.d
- observations suivent un ordre séquentiel
- processus non-stationnaire

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

RNN, GRU & LSTM

## Introduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

# Modélisation des séquences

## Comment "bien" modéliser des séquences?

- Conserver la notion d'ordre
- ► Capturer des dépendances long-terme
- ► Gérer les séquences de longueur variable
- ► Limiter le nombre de paramètres

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et mot

RNN, GRU & LSTM

#### Introduction

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

# Modélisation des séquences

Objectif général : estimer  $x_t$  sachant les observations passées

$$x_t \sim p(x_t|x_1,x_2,\ldots,x_{t-1})$$

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

# RNN, GRU & LSTM

## Introduction

GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

onclusion

# Modélisation des séquences

Objectif général : estimer  $x_t$  sachant les observations passées

$$x_t \sim p(x_t|x_1,x_2,\ldots,x_{t-1})$$

- $\Rightarrow$  2 stratégies pour faire cela :
  - 1. Les modèles auto-régressifs
    - Le principe :
      - ightharpoonup Considérer une fenêtre au
      - Utiliser uniquement les observations dans cette fenêtre pour estimer x<sub>f</sub>

#### Outline

## Apprentissage Statistique II

Introduction

Profils de k-mers

CIVIN et moti

# RNN, GRU & LSTM

## Introduction

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

Conclusion

## Modélisation des séquences

Objectif général : estimer  $x_t$  sachant les observations passées

$$x_t \sim p(x_t|x_1,x_2,\ldots,x_{t-1})$$

- $\Rightarrow$  2 stratégies pour faire cela :
  - 1. Les modèles auto-régressifs
    - Le principe :
      - ightharpoonup Considérer une fenêtre au
      - Utiliser uniquement les observations dans cette fenêtre pour estimer x<sub>t</sub>
    - ► Les limites :
      - ightharpoonup Comment choisir  $\tau$ ?
      - Les erreurs s'accumulent au fil des itérations
- ⇒ peut-être modélisé par des approches "standards".
  - e.g., réseau de neurones MLP ou modèle de régression

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

### Introduction

GRU : Gated Recurrent Units LSTM : Long Short Term Memory

onclusion

## Modélisation des séquences

Objectif général : estimer  $x_t$  sachant les observations passées

$$x_t \sim p(x_t|x_1,x_2,\ldots,x_{t-1})$$

- ⇒ 2 stratégies pour faire cela :
  - 2. Les modèles auto-régressifs avec représentation latente
    - Le principe :
      - Construire un résumé des observations passées h<sub>t</sub>
      - ▶ Utiliser le résumé  $h_t$  et  $x_{t-1}$  pour estimer  $x_t$ :

$$p(x_t|x_1, x_2, \dots, x_{t-1}) \approx p(x_t|x_{t-1}, h_t)$$

Mettre à jour le résumé :

$$h_{t+1}=g(h_t,x_t)$$

⇒ peut être modélisé par des réseaux de neurones récurrents.

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

## RNN, GRU & LSTM

### Introduction

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

References

### Outline

### Apprentissage Statistique II

RNN

Recurrent Units LSTM: Long Short

Term Memory

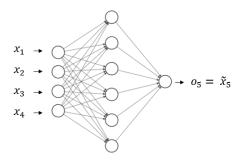
# Architectures

- ► Bag-of-words & profils de k-mers
- ► CNNs & détection de motifs
- Réseaux récurrents, GRU & LSTM
  - Réseaux de neurones récurrents
  - ► GRU: Gated Recurrent Units
  - ► LSTM : Long Short Term Memory
- ► Transformers

## RNN sans mémoire : MLP revisité

### On considère un modèle auto-regressif :

- ▶ Un mini-batch de données  $X \in \mathbb{R}^{n \times d}$ 
  - ▶ NB : d= taille de la fenêtre temporelle, signal univarié
- ► Un MLP avec une seule couche cachée



$$\boldsymbol{H} = \Phi(\boldsymbol{X} \boldsymbol{W}_{x,h} + \boldsymbol{b}_h)$$

$$O = HW_{h,a} + b_a$$

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

## RNN, GRU &

RNN

### RNN

Recurrent Units LSTM : Long Short Term Memory

Conclusion

Statistique II

## On considère un modèle auto-régressif avec mémoire :

- ▶ Un mini-batch de données  $X_t \in \mathbb{R}^{n \times d}$ , t = 1, ..., T
  - NB : ici d = # features, le signal peut être multivarié
- Un réseau de neurones récurrent :

$$\boldsymbol{H} = \Phi(\boldsymbol{X} \boldsymbol{W}_{x,h} + \boldsymbol{b}_h) \rightarrow \boldsymbol{H}_t = \Phi(\boldsymbol{X}_t \boldsymbol{W}_{x,h} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{h,h} + \boldsymbol{b}_h)$$

$$oldsymbol{O} = oldsymbol{H} oldsymbol{W}_{h,q} + oldsymbol{b}_q 
ightarrow oldsymbol{O}_{oldsymbol{t}} = oldsymbol{H}_{oldsymbol{t}} oldsymbol{W}_{h,q} + oldsymbol{b}_q$$

RNN

RNN

LSTM: Long Short Term Memory

On considère un modèle auto-régressif avec mémoire :

- ▶ Un mini-batch de données  $X_t \in \mathbb{R}^{n \times d}$ , t = 1, ..., T
  - NB : ici d = # features, le signal peut être multivarié
- Un réseau de neurones récurrent :

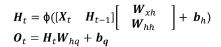
$$\boldsymbol{H} = \Phi(\boldsymbol{X} \boldsymbol{W}_{x,h} + \boldsymbol{b}_h) \rightarrow \boldsymbol{H}_t = \Phi(\boldsymbol{X}_t \boldsymbol{W}_{x,h} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{h,h} + \boldsymbol{b}_h)$$

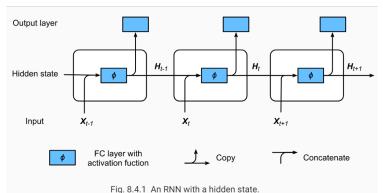
$$oldsymbol{O} = oldsymbol{H} oldsymbol{W}_{h,q} + oldsymbol{b}_q 
ightarrow oldsymbol{O}_t = oldsymbol{H}_t oldsymbol{W}_{h,q} + oldsymbol{b}_q$$

### Remarques:

- $\mathbf{H}_t = l'$ état caché du RNN
- Les paramètres du modèle  $(\boldsymbol{W}_{h,h}, \boldsymbol{W}_{x,h}, \boldsymbol{b}_h, \boldsymbol{b}_g)$  ne dépendent pas de t

## Représentation graphique d'un RNN





#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

### RNN, GRU &

Introdu

#### GRU : Gated Recurrent Units LSTM : Long Short Term Memory

Conclusion

## Apprentissage des paramètres d'un RNN

BPTT : rétro-propagation du gradient au cours du temps

### $\Rightarrow$ 2 étapes clés :

- 1. calculer les dérivés de la fonction de coût par rapport à chaque paramètre du modèle.
- 2. mettre à jour les paramètres dans la direction opposée du gradient pour minimiser la fonction de coût.

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

птгопис

### RNN

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onelucion

## Apprentissage des paramètres d'un RNN

BPTT: rétro-propagation du gradient au cours du temps

### $\Rightarrow$ 2 étapes clés :

- 1. calculer les dérivés de la fonction de coût par rapport à chaque paramètre du modèle.
- 2. mettre à jour les paramètres dans la direction opposée du gradient pour minimiser la fonction de coût.

### En pratique:

- On calcule la fonction de coût à chaque temps t
- On somme pour les différents temps t pour avoir le coût total
- ▶ Pour chaque paramètre, on calcule et accumule les gradients obtenus pour chaque temps *t*

L'étape de rétro-propagation du gradient est plus compliquée à cause de la récurrence

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

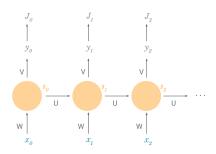
RNN, GRU & LSTM

Introduc

### RNN

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

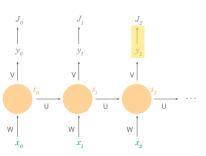


#### Outline

### Apprentissage Statistique II

Introduction

### RNN



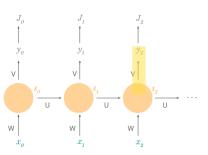
$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2}$$

#### Outline

### Apprentissage Statistique II

Introduction

### RNN



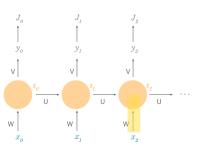
$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2}$$

#### Outline

### Apprentissage Statistique II

Introduction

### RNN



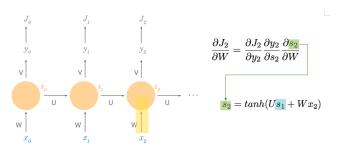
$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}$$

#### Outline

### Apprentissage Statistique II

Introduction

### RNN



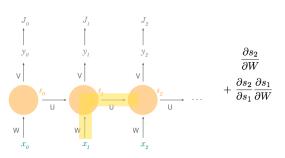
#### Outline

### Apprentissage Statistique II

Introduction RNN

## Recurrent Units

LSTM: Long Short Term Memory

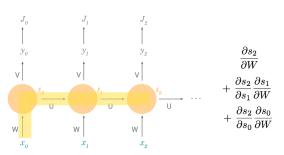


#### Outline

### Apprentissage Statistique II

Introduction

### RNN

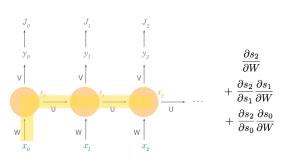


#### Outline

### Apprentissage Statistique II

Introduction

### RNN



$$\frac{\partial s_n}{\partial s_{n-1}} = \mathbf{W^T} diag[\mathbf{f'}(W_{s_{j-1}} + Ux_j)]$$

- ⇒ On fait plusieurs multiplications de ce type de termes
- ⇒ Plus on revient dans le temps, plus on fait de multiplications, plus le gradient diminue
- ⇒ On se focalise sur des dépendances court-terme

Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU & LSTM

RNN

#### GRU : Gated Recurrent Units LSTM : Long Short

Term Memory

Conclusion

Keferences

L'apprentissage des réseaux récurrents est complexe :

#### Outline

Apprentissage Statistique II

Introduction

### RNN

L'apprentissage des réseaux récurrents est complexe :

▶ Problèmes d'exploding gradients : Multiplication de valeurs >1  $\Rightarrow$  Les gradients  $\rightarrow \infty$ 

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU & LSTM

RNN

### KNN

Recurrent Units
LSTM : Long Short
Term Memory

onclusion

L'apprentissage des réseaux récurrents est complexe :

- ▶ Problèmes d'exploding gradients : Multiplication de valeurs >1 ⇒ Les gradients  $\to \infty$
- → Tronquer la récurrence et borner la norme du gradient

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU & LSTM

RNN

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

### L'apprentissage des réseaux récurrents est complexe :

- ▶ Problèmes d'exploding gradients : Multiplication de valeurs >1 ⇒ Les gradients  $\to \infty$
- → Tronquer la récurrence et borner la norme du gradient
- ▶ Problèmes de vanishing gradients : Multiplication de valeurs  $< 1 \Rightarrow$  Les gradients  $\rightarrow 0$

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

RNN

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

# L'apprentissage des réseaux récurrents est complexe :

- ▶ Problèmes d'exploding gradients : Multiplication de valeurs >1 ⇒ Les gradients  $\to \infty$
- → Tronquer la récurrence et borner la norme du gradient
- ▶ Problèmes de vanishing gradients : Multiplication de valeurs  $< 1 \Rightarrow$  Les gradients  $\rightarrow 0$
- → Tronquer la récurrence, choix de la fonction d'activation, Initialisation des poids et changement d'architecture

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU &

RNN

GRU : Gated Recurrent Units LSTM : Long Short

Term Memory

Conclusion

# L'apprentissage des réseaux récurrents est complexe :

- ▶ Problèmes d'exploding gradients : Multiplication de valeurs >1 ⇒ Les gradients  $\to \infty$
- → Tronquer la récurrence et borner la norme du gradient
- ▶ Problèmes de vanishing gradients : Multiplication de valeurs  $< 1 \Rightarrow$  Les gradients  $\rightarrow 0$
- → Tronquer la récurrence, choix de la fonction d'activation, Initialisation des poids et changement d'architecture
- ► Instabilité numérique

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU &

Introdu

GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

Conclusion

### Apprentissage Statistique II

Outline

RNN

Recurrent Units

LSTM: Long Short Term Memory

L'apprentissage des réseaux récurrents est complexe :

- Problèmes d'exploding gradients : Multiplication de valeurs  $>1 \Rightarrow$  Les gradients  $\rightarrow \infty$
- → Tronquer la récurrence et borner la norme du gradient
- Problèmes de vanishing gradients : Multiplication de valeurs  $< 1 \Rightarrow$  Les gradients  $\rightarrow 0$
- → Tronguer la récurrence, choix de la fonction d'activation. Initialisation des poids et changement d'architecture
- Instabilité numérique
- → Tronquer la récurrence

Finalement, un RNN se résume à :

$$egin{aligned} oldsymbol{H}_t &= \Phi(oldsymbol{X}_t oldsymbol{W}_{ imes,h} + oldsymbol{H}_{t-1} oldsymbol{W}_{h,h} + oldsymbol{b}_h) \ oldsymbol{O}_t &= oldsymbol{H}_t oldsymbol{W}_{h,q} + oldsymbol{b}_q \end{aligned}$$

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

## RNN, GRU & LSTM

Introduction

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

onclusion

Finalement, un RNN se résume à :

$$\boldsymbol{H}_t = \Phi(\boldsymbol{X}_t \boldsymbol{W}_{x,h} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{h,h} + \boldsymbol{b}_h)$$

$$oldsymbol{O_t} = oldsymbol{H_tW}_{h,q} + oldsymbol{b}_q$$

...mais la mémoire  $W_{h,h}$  est figée!

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

RNN

### RNN

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

Conclusion

Finalement, un RNN se résume à :

$$oldsymbol{H}_t = \Phi(oldsymbol{X}_t oldsymbol{W}_{ imes,h} + oldsymbol{H}_{t-1} oldsymbol{W}_{h,h} + oldsymbol{b}_h)$$

$$\boldsymbol{O_t} = \boldsymbol{H_t} \boldsymbol{W}_{h,q} + \boldsymbol{b}_q$$

...mais la mémoire W<sub>h,h</sub> est figée!

- ▶ certaines observations du passé sont très importantes
   ⇒ à garder absolument
- certaines observations du passé sont inutiles
   à supprimer
- ▶ le contenu de l'état caché peut devenir obsolète
   ⇒ remise à zéro

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

VN et motif

RNN, GRU & LSTM

RNN

### KNN

Recurrent Units
LSTM: Long Short
Term Memory

onclusion

Finalement, un RNN se résume à :

$$\boldsymbol{H}_t = \Phi(\boldsymbol{X}_t \boldsymbol{W}_{x,h} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{h,h} + \boldsymbol{b}_h)$$

$$O_t = H_t W_{h,q} + b_q$$

...mais la mémoire  $W_{h,h}$  est figée!

- ▶ certaines observations du passé sont très importantes
   ⇒ à garder absolument
- ▶ certaines observations du passé sont inutiles⇒ à supprimer
- ▶ le contenu de l'état caché peut devenir obsolète
   ⇒ remise à zéro

 $\Rightarrow$  Introduction de mécanismes de "gating" avec les :

GRUs et LSTMs

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & .STM

RNN

### RIVIN

Recurrent Units
LSTM: Long Short
Term Memory

onclusion

### Outline

### Apprentissage Statistique II

CRII · Cated Recurrent Units

LSTM: Long Short Term Memory

## Architectures

- ► Bag-of-words & profils de k-mers
- ► CNNs & détection de motifs
- Réseaux récurrents, GRU & LSTM
  - Réseaux de neurones récurrents
  - ► GRU: Gated Recurrent Units
  - ► LSTM : Long Short Term Memory
- ► Transformers

### Architecture introduite en 2014 (Cho et al., 2014) :

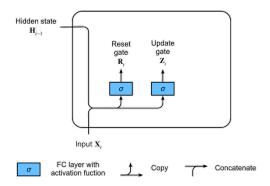


Fig. 9.1.1 Reset and update gate in a GRU.

 $lackbox{ extbf{P}}$  portes Reset et Update :  $egin{align*} & \mathbf{R}_t = \sigma(\mathbf{X}_t\mathbf{W}_{xr} + \mathbf{H}_{t-1}\mathbf{W}_{hr} + \mathbf{b}_r), \ & \mathbf{Z}_t = \sigma(\mathbf{X}_t\mathbf{W}_{xz} + \mathbf{H}_{t-1}\mathbf{W}_{hz} + \mathbf{b}_z). \end{split}$ 

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

### RNN, GRU & LSTM

Introduction

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

Conclusio

σ

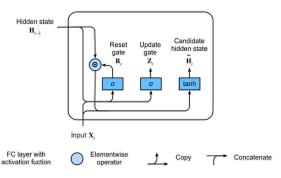


Fig. 9.1.2 Candidate hidden state computation in a GRU. The multiplication is carried out elementwise.

▶ portes Reset et Update :  $\frac{\mathbf{R}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r),}{\mathbf{Z}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \mathbf{b}_z).}$ 

igspace Etat caché candidat :  $ilde{\mathbf{H}}_t = anh(\mathbf{X}_t \mathbf{W}_{xh} + (\mathbf{R}_t \odot \mathbf{H}_{t-1}) \mathbf{W}_{hh} + \mathbf{b}_h)$ 

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

Introduc

GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

Conclusion

étérences

σ

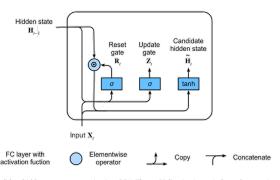


Fig. 9.1.2 Candidate hidden state computation in a GRU. The multiplication is carried out elementwise.

▶ portes Reset et Update :  $\frac{\mathbf{R}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r),}{\mathbf{Z}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \mathbf{b}_z).}$ 

► Etat caché candidat :  $\tilde{\mathbf{H}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + (\mathbf{R}_t \odot \mathbf{H}_{t-1}) \mathbf{W}_{hh} + \mathbf{b}_h)$ 

 $\Rightarrow$  rappel pour un RNN :  $\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h)$ 

Outline

### Apprentissage Statistique II

Introductio

Profils de k-mers

NN et moti

RNN, GRU & LSTM

Introduc

GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

Conclusion

References

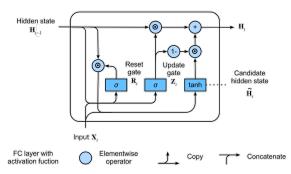


Fig. 9.1.3 Hidden state computation in a GRU. As before, the multiplication is carried out elementwise.

- ▶ portes Reset et Update :
- portes reser er opaute
- ► Etat caché candidat :
- ► Etat caché final :

$$\mathbf{R}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r),$$
  
 $\mathbf{Z}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \mathbf{b}_z).$ 

 $ilde{\mathbf{H}}_t = anh(\mathbf{X}_t\mathbf{W}_{xh} + (\mathbf{R}_t\odot\mathbf{H}_{t-1})\,\mathbf{W}_{hh} + \mathbf{b}_h)$ 

$$\mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 - \mathbf{Z}_t) \odot \tilde{\mathbf{H}}_t$$

Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

### RNN, GRU & LSTM

RNN

GRU: Gated Recurrent Units LSTM: Long Short

Term Memory

\_ . . .

References

## Implémentation des GRUs sous Keras

## La classe GRU existe déjà sous keras :

#### GRU class

```
tf.keras.layers.GRU(
   units.
   activation="tanh",
   recurrent activation="sigmoid",
   use bias=True.
   kernel initializer-"glorot uniform".
   recurrent initializer="orthogonal".
   bias initializer="zeros".
   kernel regularizer=None,
   recurrent regularizer-None,
   bias regularizer=None.
   activity regularizer=None,
   kernel constraint=None.
   recurrent constraint=None.
   bias constraint=None,
   dropout=0.0,
   recurrent dropout=0.0,
   return sequences=False,
   return state=False.
```

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

RNN GRIL: Gated

Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

## Implémentation des GRUs sous Keras

### La classe GRU existe déjà sous keras :

### **GRU** class

```
tf.keras.layers.GRU(
   units.
   activation="tanh",
   recurrent activation="sigmoid",
   use bias=True.
   kernel initializer-"glorot uniform".
   recurrent_initializer="orthogonal",
   bias initializer="zeros",
   kernel regularizer=None,
   recurrent regularizer=None,
   bias regularizer=None.
   activity regularizer=None,
   kernel constraint=None.
   recurrent constraint=None.
   bias constraint=None,
   dropout=0.0,
   recurrent dropout=0.0,
   return sequences=False,
   return state=False.
```

### Utilisation dans un exemple :

```
>>> inputs - tf.random.normal([32, 10, 8])
>>> gru - tf.keras.layers.GRU(4)
>>> output - gru(inputs)
>>> print(output.shape)
(32, 4)
>>> gru - tf.keras.layers.GRU(4, return_sequences-True, return_state-True)
>>> whole_sequence_output, final_state - gru(inputs)
>>> print(ohloe_sequence_output.shape)
(32, 10, 4)
>>> print(final_state.shape)
(32, 4)
```

#### Outline

### Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et mot

RNN, GRU & LSTM

RNN GRU : Gated

Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

### Outline

### Apprentissage Statistique II

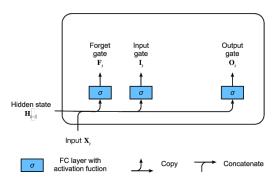
Recurrent Units

LSTM: Long Short Term Memory

## Architectures

- ► Bag-of-words & profils de k-mers
- ► CNNs & détection de motifs
- Réseaux récurrents, GRU & LSTM
  - Réseaux de neurones récurrents
  - ► GRU: Gated Recurrent Units
  - ► LSTM : Long Short Term Memory
- ▶ Transformers

### Architecture introduite en 1997<sup>3</sup> avec 3 mécanismes :



► Input / Forget / Output :

$$egin{aligned} \mathbf{I}_t &= \sigma(\mathbf{X}_t\mathbf{W}_{xi} + \mathbf{H}_{t-1}\mathbf{W}_{hi} + \mathbf{b}_i), \ \mathbf{F}_t &= \sigma(\mathbf{X}_t\mathbf{W}_{xf} + \mathbf{H}_{t-1}\mathbf{W}_{hf} + \mathbf{b}_f), \ \mathbf{O}_t &= \sigma(\mathbf{X}_t\mathbf{W}_{xo} + \mathbf{H}_{t-1}\mathbf{W}_{ho} + \mathbf{b}_o), \end{aligned}$$

#### Apprentissage Statistique II

Introduction

Profils de k-mers

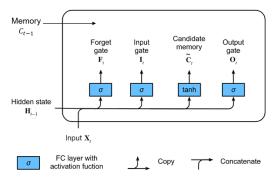
NN et moti

#### RNN, GRU & LSTM

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

Outline



#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et moti

#### RNN, GRU & LSTM

RNN GRU : Gated Recurrent Units

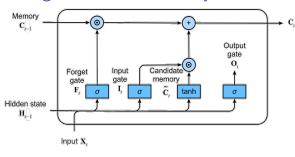
LSTM : Long Short Term Memory

Conclusion

léférences

$$egin{aligned} \mathbf{I}_t &= \sigma(\mathbf{X}_t\mathbf{W}_{xi} + \mathbf{H}_{t-1}\mathbf{W}_{hi} + \mathbf{b}_i), \ \mathbf{F}_t &= \sigma(\mathbf{X}_t\mathbf{W}_{xf} + \mathbf{H}_{t-1}\mathbf{W}_{hf} + \mathbf{b}_f), \ \mathbf{O}_t &= \sigma(\mathbf{X}_t\mathbf{W}_{xo} + \mathbf{H}_{t-1}\mathbf{W}_{ho} + \mathbf{b}_o), \end{aligned}$$

$$ullet$$
 Mémoire candidate :  $ilde{\mathbf{C}}_t = anh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$ 



σ

FC layer with activation fuction



\_\_\_\_\_Cop

**↑** Cond

Concatenate

 $\mathbf{I}_t = \mathbf{F}_t =$ 

 $\mathbf{I}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xi} + \mathbf{H}_{t-1}\mathbf{W}_{hi} + \mathbf{b}_{i}),$ 

 $\mathbf{F}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xf} + \mathbf{H}_{t-1} \mathbf{W}_{hf} + \mathbf{b}_f),$   $\mathbf{O}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xo} + \mathbf{H}_{t-1} \mathbf{W}_{ho} + \mathbf{b}_o),$ 

▶ Mémoire candidate :

▶ Input / Forget / Output :

 $ilde{\mathbf{C}}_t = anh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$ 

► Mémoire finale :

 $\mathbf{C}_t = \mathbf{F}_t \odot \mathbf{C}_{t-1} + \mathbf{I}_t \odot \mathbf{\tilde{C}}_t$ 

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et moti

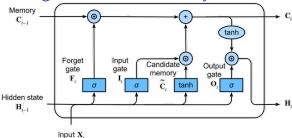
RNN, GRU & LSTM

RNN
GRU: Gated
Recurrent Units

LSTM : Long Short Term Memory

Concidenci

References



FC layer with activation fuction









 $\mathbf{I}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xi} + \mathbf{H}_{t-1} \mathbf{W}_{hi} + \mathbf{b}_i),$ 

▶ Input / Forget / Output :  $\mathbf{F}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xf} + \mathbf{H}_{t-1} \mathbf{W}_{hf} + \mathbf{b}_f),$ 

 $\mathbf{O}_t = \sigma (\mathbf{X}_t \mathbf{W}_{xo} + \mathbf{H}_{t-1} \mathbf{W}_{ho} + \mathbf{b}_o),$ 

ullet Mémoire candidate :  $ilde{\mathbf{C}}_t = anh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$ 

 $lackbox{\sf M\'emoire finale}$  :  ${f C}_t = {f F}_t \odot {f C}_{t-1} + {f I}_t \odot ilde{f C}_t$ 

► Etat caché final :  $\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t)$  50/61

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

RNN, GRU & LSTM

RNN GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

# Implémentation des LSTM sous Keras

### La classe LSTM existe déjà sous keras :

#### LSTM class

```
tf.keras.layers.LSTM(
    units,
    activation="tanh".
   recurrent_activation="sigmoid",
    use bias=True.
    kernel initializer="glorot uniform",
   recurrent initializer-"orthogonal".
    bias initializer="zeros".
    unit forget bias=True,
    kernel regularizer-None,
    recurrent regularizer=None,
    bias regularizer=None,
    activity regularizer-None,
    kernel constraint=None.
    recurrent constraint=None.
    bias constraint-None.
    dropout=0.0,
    recurrent dropout=0.0.
    return sequences=False.
```

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

# RNN, GRU & LSTM

RNN

Recurrent Units LSTM : Long Short Term Memory

Conclusion

## Implémentation des LSTM sous Keras

### La classe LSTM existe déjà sous keras :

LSTM class

```
tf.keras.layers.LSTM(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="recording or tangent of the property of the property
```

### Utilisation dans un exemple :

bias\_constraint=None,
dropout=0.0,
recurrent\_dropout=0.0,
return sequences=False.

```
>>> inputs - tf.random.normal([22, 18, 8])
>>> ists - tf.keras.layers.LSTM(4)
>>> output - sixe(Inputs)
>>> print(output.shape)
(22, 4)
>>> ists - tf.keras.layers.LSTM(4, return_sequences.True, return_state-True)
>>> whole_seq_output, final_memory_state, final_carry_state - litm(inputs)
>>> print(bhole_seq_output.shape)
(22, 18), 4)
>>> print(final_memory_state.shape)
(22, 4)
>>> print(final_memory_state.shape)
(22, 4)
```

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

# RNN, GRU & LSTM

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

### On peut empiler plusieurs couches LSTMs:

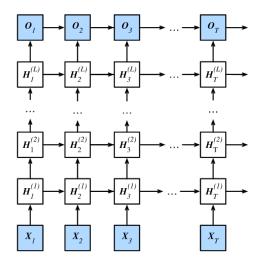


Fig. 9.3.1 Architecture of a deep recurrent neural network.

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et mo

RNN, GRU & LSTM

RNN CRIL: Gated

Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

On peut aussi faire des LSTM bi-directionels avec les deux sens de lecture des séquences :

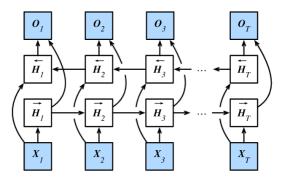


Fig. 9.4.2 Architecture of a bidirectional recurrent neural network.

▶ NB : si on a accès à toute la séquence en entrée...

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

MM et mot

RNN, GRU &

Introduction

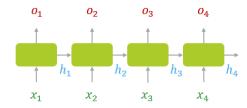
GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

Conclusion

## Utilisation dans un workflow global

Plusieurs sorties sont possibles : le dernier état caché, tous les états cachés, la dernière sortie, toutes les sorties ...



#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

#### RNN, GRU & LSTM

Introduction RNN

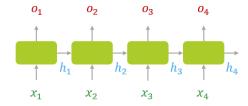
GRU: Gated Recurrent Units LSTM: Long Short

Term Memory

Conclusion

## Utilisation dans un workflow global

Plusieurs sorties sont possibles : le dernier état caché, tous les états cachés, la dernière sortie, toutes les sorties ...



- ► En général, on se ramène à une dimension fixe pour pouvoir utiliser une couche de classification
- Plusieurs stratégies de pooling sont possibles : max pooling, average pooling ou pooling via un mécanisme d'attention

Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & LSTM

Introduction

GRU : Gated Recurrent Units

LSTM : Long Short Term Memory

Conclusion

létérences

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

CNN et moti

#### RNN, GRU & LSTM

Introd

Conclusion

GRU: Gated Recurrent Units LSTM: Long Short Term Memory

#### Conclusion

### Conclusion

Deep-Learning et génomique : beaucoup d'intérêt dans la communauté scientifique

## Ré-utilisation d'approches développées en NLP et imagerie :

- méthodes d'"embeddings" pour apprendre des représentation de k-mers et de séquences
- réseaux à convolution pour l'identification "end to end" de motifs génomiques ("probabilistes")
- réseaux récurrents pour tirer parti pleinement de l'information séquentielle (avec potentiellement une couche de convolution et/ou d'embedding en amont)

⇒ Perspective : mécanismes d'attention et transformers

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

## RNN, GRU &

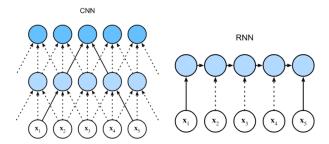
Introduct

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

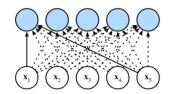
#### Conclusion

### Mécanismes d'attention

### Comparaison des trois types d'architecture :



#### Self-attention



#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

VN et mot

## RNN, GRU &

Introduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

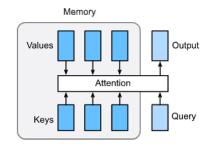
#### Conclusion

### Mécanismes d'attention

- Entrée : une requête q
- ▶ Mémoire : des couples de clés et valeurs  $(k_i, v_i)_{i \in \{1...n\}}$ 
  - 1. Calculer la similarité entre l'entrée et les clés :

$$a_i = \alpha(\mathbf{q}, \mathbf{k}_i)$$

- 2. Calculer les poids :  $\mathbf{b} = softmax(\mathbf{a})$ , avec  $b_i = \frac{exp(a_i)}{\sum_i exp(a_j)}$
- 3. Calculer la sortie :  $\mathbf{o} = \sum_{i=1}^{n} b_i \mathbf{v}_i$



#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et mot

## RNN, GRU & LSTM

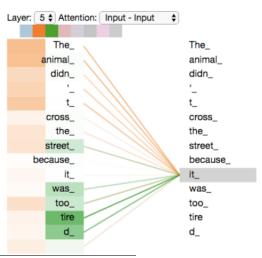
ntroduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

#### Conclusion

### Illustration du mécanisme d'attention multi-têtes 4

Visualisation des poids d'attention pour le mot "it" calculés dans les têtes d'attention 2 et 3



Outline

Apprentissage Statistique II

Introduction

Profils de k-mers

NN et motif

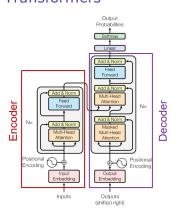
RNN, GRU &

Introduction

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

Conclusion

### **Transformers**



- ► Architecture introduite en 2017 (Vaswani et al., 2017)
- Architecture de type encodeur-décodeur avec différents mécanismes d'attention

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

VN et moti

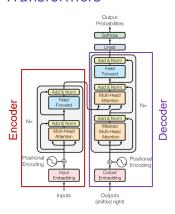
## RNN, GRU &

Introducti

GRU : Gated Recurrent Units LSTM : Long Short

# Conclusion

### **Transformers**



- Architecture introduite en 2017 (Vaswani et al., 2017)
- Architecture de type encodeur-décodeur avec différents mécanismes d'attention

#### Outline

#### Apprentissage Statistique II

Introduction

Profils de k-mers

NN et moti

RNN, GRU & \_STM

Introducti

GRU : Gated Recurrent Units LSTM : Long Short Term Memory

#### Conclusion

Références

### Applications:

- ► Traitement du langage (traduction)
- Prédiction de séries temporelles
- Génération d'images
- ► Détection d'objets

### Références

- Babak Alipanahi, Andrew Delong, Matthew Weirauch, and Brendan Frey. Predicting the sequence specificities of dna- and rna-binding proteins by deep learning. *Nature biotechnology*, 33, 07 2015. doi: 10.1038/nbt.3300.
- Maxwell L. Bileschi, David Belanger, Drew Bryant, Theo Sanderson, Brandon Carter, D. Sculley, Mark A. DePristo, and Lucy J. Colwell. Using Deep Learning to Annotate the Protein Universe. bioRxiv, pages 1–29, 2019. doi: 10.1101/626507.
- David H. Brookes and Jennifer Listgarten. Design by adaptive sampling. oct 2018. URL http://arxiv.org/abs/1810.03714.
- Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation, 2014. URL
- http://arxiv.org/abs/1406.1078. cite arxiv:1406.1078Comment: EMNLP 2014.
- Nicki Skafte Detlefsen, Søren Hauberg, and Wouter Boomsma. What is a meaningful representation of protein sequences?, 2021.
- Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian Theis. Deep learning : new computational modelling techniques for genomics. Nature Reviews Genetics, 20:1, 04 2019. doi: 10.1038/s41576-019-0122-6.
- Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9 (8):1735-1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.
- Qiaoxing Liang, Paul W Bible, Yu Liu, Bin Zou, and Lai Wei. DeepMicrobes: taxonomic classification for metagenomics with deep learning. *NAR Genomics and Bioinformatics*, 2 (1):1–13, 2020. doi: 10.1093/nargab/lqaa009.
- Ameni Trabelsi, Mohamed Chaabane, and Asa Ben-Hur. Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics, 35(14)::269–i277, 07 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/btz339. URL https://doi.org/10.1093/bioinformatics/btz339.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https:

//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Outline

Apprentissage

Statistique II

Introduction

Profils de k-mers

VIV et mot

RNN, GRU & LSTM

RNN
GRU: Gated
Recurrent Units
LSTM: Long Short
Term Memory

onclusion